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Founder of  structural safety. His 
work epitomized fusion of 
mechanics and probability.

After him: 50-year SCHISM:
- advanced probability with 

simplistic mechanics
or
- advanced mechanics with 

simplistic probability

Make them fuse again!

Alfred M. 
Freudenthal
1906 – 1977
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Overlooked:
RELIABLITY-BASED DESIGN OF MATERIALS, NOT 
JUST STRUCTURES, AND FOCUSED ON THE TAIL

• Optimize not the mean material strength but the 
strength at the tail of 10-6 failure probability, Pf

• 10-6 is the maximum tolerable Pf for engineering 
structures 

• Controlling material architecture can profoundly 
alter the strength probability distribution 

NEEDED:  TAIL-RISK DESIGN
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PLASTIC: BRITTLE:
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Example:  Huge tail difference between 
Gaussian (normal) and Weibull 
cumulative distribution functions (cdf)

6



In quasibrittle materials, for the same CoV, 
superior mean strength can lead to           
inferior strength at the 10-6 tail

The probability distribution must be known analytically!

Tail strength
35 % higher

Mean 
8% lower
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Infinite weakest-link model                
Weibull (1939) distribution; Fisher (1928)
Finite weakest-link model (NU 2005)

Fiber bundle model (Daniels 1945)
Gaussian distribution

Chain-of-bundles model 
(Harlow & Phoenix 1985)

Fishnet statistics (NU 2017)

Analytically Tractable Strength Models 
for Failure Probability (incl. Tail)

EXISTING

NEW
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Large
Specimen

Small Specimen

Concrete (archetypical), fiber composites,
tough ceramics, rocks, bones, sea ice,
rigid foams, dental cements, dentine, 
nacre, biological shells, cartilage, wood, 

consolidated snow, particle board, paper,
carton, cast iron, thin films,
carbon nanotubes, fiber-reinforced concrete,
cold asphalt concrete, mortars, masonry,  stiff
clay, silt, cemented sand, grouted soil,
refractories, coal, oil and gas shales, plus all
brittle materials on micro- and nano-scales.

Quasibrittle Materials
— brittle constituents, but inhomogenity size and the 
RVE are not << structure size D.

At increasing size D, 
they all transition 
from ductile to brittle.

They all exhibit non-negligible 
material characteristic length. 9



I. 
Review of Recent Results  

on Tail  Strength Probability 
of Quasibrittle Randomly 
Heterogenous Materials
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We focus on 
quasibrittle failures of Type 1
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ZP Bažant, J-L Le, MZ Bazant (2009), Proc.,National Academy of Sciences 106, 11484--11489.

From Kramers’ rule of transition rate theory:

The only way to determine Pf is on atomistic scale:

Small:

Q = activation energy
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How to upscale from nano to macro?
— scale transitions are governed by microcrack

interactions in fracture process zone (FPZ)

Series coupling
—localization, no  
homogenization

Parallel
coupling 

—compatibility,
homogenization

Microcracks

Macrocrack

- Power law tail, exponent n = 2 at nanoscale. In scale transitions to 
macro RVE, power law tail is indestructible, n is increased to 20—50. 
Parallel couplings increase n, series couplings deepen tail.

1 2 n
…

1
2

N
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Nano-Macro Transition of Tail of Strength cdf

Nanoscale: 
cdf tail ~σ 2  

         

1
2

N

1 2 n
…

• Power-law tail with
zero threshold  
is indestructible!

One RVE:

softening
(reality)

plastic

brittle

σ

ε
ZP Bažant, SD Pang (2007). J. of the Mechanics and Physics of Solids 55, 91-134.

• In parallel couplings, the tail 
exponents are additive. 
• Parallel coupling shortens the tail
reach by order of magnitude.
•In series couplings, exponent 
remains
•Series coupling extends the tail 
reach.
• Parallel coupling produces cdf with
Gaussian core.



Size Effect on Strength cdf in Weibull Scale
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Calibration of Pgr by Size Effect
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Note: Zero threshold!Calibration Result:
Pgr ≈ 0.001

Note:  Similar curves are predicted by deterministic nonlocal model.

ZP Bažant, SD Pang (2007). J. of the Mech. & Physics of Solids 55, 91-134.

Tail:
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As structure 
size increases, 
the tail risk 
point moves!

Tail-risk 
design must 
be size 
dependent



Size Effect on Flexural Strength of Laminates 
Reinterpretation of Jackson’s (NASA) Tests
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r = 0.8,
m = 35,
ω = 0.135

Theory fits 
well!

( ) ,     
10 rmrn

rN
df ϑϑσ +=

Energetic-Statistical 
Size Effect Law:
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Nominal Strength:

bdr Dsmnrf  , , , , ,0 = constants,
D = char. size of structure,

= Weibull modulus
= material constant, 
indepent of yarn layout

m

dn = no. of dimension for 
scaling
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VALIDATION AND CALIBRATION:  

Optimal Fit of Weibull’s (1939)  
Monumental Experiments
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Portland cement 
mortars of 3 ages

Each point =
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~100 tests 
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Pf  ≈ 0.65

RVE size ∼ 0.6-1.0 cm; Specimen vol. ∼ 100-3000 cm3

KINK — classical 
Weibull theory 
can’t explain 
(finite threshhold
is an incorrect 
remedy)

⇒ Pgr ≈ 0.001
ZP Bažant, SD Pang (2007). J. of the Mechanics and Physics of Solids 55, 91-134.
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gives realistic 
size effect!
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gives way 
excessive 
size 
effect!
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Test Size = 50 RVEs
Data: Santos et al.,2003

Gauss-Weibull Graft

3-Para.
Weibull

Wrong tail probability is experimentally provable only by size effect22



3-Parameter
Weibull

Grafted
2-Parameter

Gauss- Weibull

=10 =100 =1000

SIZE EFFECT ON 
MEAN STRENGTH

23



Generalization to Cyclic (or Static) Fatigue Lifetimes

• Atomistic crack-length 
jumps lead to Paris 
Law (or Evans Law) at 
nanoscale, with 
exponent of stress = 2

• Analytical way of 
multiscale transition:

Energy dissipation 
rates in macroscale FPZ 
and in all atomic scale 
cracks must be equal

macro-cyclic FPZ: 
q1 sub-cracks

FPZ2:  q2sub-sub 
cracks

a

ai

FPZ3: q3sub-..-
cracks

Pi

ui
…

Bažant & JL Le (2009). Engrg. Failure Analysis 16, p. 2521
M. Salviato, K Kirane, & ZP Bažant (2014) JMPS, 440-454
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