Effect of CoV of Link Strength Scatter at 10-6 Tail

Low scatter - one crack - close to weakest link ...

<u>High</u> scatter – many cracks – not close

→ safer! Scatter is good!

Weibull to Gaussian cdf Transition upon Changing Aspect ratio of Fishnet

Upper Bound→ **Increasing Reliability**→ **Lower Bound**

37

III. Latest Results at NU on Fishnet Statistics

(in detail, see poster of Wen Luo)

Modification for gradually softening links:

series of stress drops

Fishnet Damage Evolution

Let N_c = number of damaged links at max. load

$$P_f(x) = \mathbb{P}(\sigma_{max} \le x) = \sum_{k=0}^{N} \mathbb{P}(N_c = k) \mathbb{P}(\sigma_{max} \le x \mid N_c = k)$$

Distribution of k^{th} smallest minimum, $s_{(k)}$, of link strength:

Based on Order Statistics:

$$W_k(x) = \mathbb{P}[s_{(k)} \le x]$$

Random cluster of damages: N_c follows geometric Poisson distribution (Pólya-Aeppli)

Size Effect = Joint Effect of Horizontal and Vertical Scaling Simulated Sample Size = 10⁴

Longitudinal scaling:

Weakest-link rule – the histogram shifts up by $\ln(s_2/s_1)$ if the length is increased from s_1 to s_2 ;

Transverse scaling:

Histograms rotate about a point, Q, at a constant rate, equally for each doubling of width

→ Slope increases.

Inferring Strength Distribution from Size Effect

Strength Distribution: $Y - y_0 = m_0[1 + c \ln(r/r_0)](X - x_0) + \ln(s/s_0)$

Median Size Effect:

$$\ln \sigma_{0.5} = \frac{\ln \ln 2 - y_0 - \ln D}{m_0 (1 + c \ln D)} + x_0$$

To sum up:

For quasibritle materials, we need
 TAIL-RISK DESIGN
 (not just Mean & Standard Deviation)

The safety factor is size dependent.

 The reliability indices (Cornell, Hasofer-Lind) have been modified.

For <u>quasibrittle</u> materials, and esp. architectured and biomimetic ones:

|Error| in safety factors

|Error| in computational mechanics

because the devil is in the tail

Thanks for Listening!

Questions?

Google "Bazant", download 455, 484, 485, 486, 488, 489, 491, 508, 509, 514, 530, 532, 542, 554, 560, 557, 562, 584, 590 (all .pdf) and summary papers: 464.pdf, 500-501.pdf; 583.pdf; 590.pdf

PROBABILISTIC MECHANICS OF QUASIBRITTLE STRUCTURES

Recent book
(322 pp.)

Strength, Lifetime and Size Effect

 $\log D$

Zdeněk Bažant • Jia-Liang Le

CAMBRIDGE