Effect of CoV of Link Strength Scatter at 10^{-6} Tail

Low scatter – one crack – close to weakest link …

- First Damage
- Damage Localization
- Crack Propagation

High scatter – many cracks – not close

\rightarrow safer! Scatter is good!

- First Damage
- Scattered Damage
- Damage Localization
- Crack Propagation

- k=1
 - Peak Load
 - Pre-peak
 - (a)

- k=4
 - Pre-peak
 - (b)

- k=5
 - Peak Load
 - (c)

- k=10
 - Post-peak
 - (d)

- k=20
 - Post-peak
 - (e)
Weibull to Gaussian cdf Transition upon Changing Aspect ratio of Fishnet

Chain

Fishnet

Bundle

Upper Bound ➔ Increasing Reliability ➔ Lower Bound

Chain Bundle Fishnet

Increasing Reliability

Weibull

Gaussian

$P_f = 0.5$

III. Latest Results at NU on Fishnet Statistics

(in detail, see poster of Wen Luo)
Modification for **gradually softening links**: series of stress drops

Single Link

- F_s
- u_1

Fishnet

- P
- u

Fishnet Damage Evolution

- (a)
- (b)
Let N_c = number of damaged links at max. load

$$P_f(x) = \mathbb{P}(\sigma_{max} \leq x) = \sum_{k=0}^{N} \mathbb{P}(N_c = k) \mathbb{P}(\sigma_{max} \leq x \mid N_c = k)$$

Distribution of k^{th} smallest minimum, $s_{(k)}$, of link strength:

Based on Order Statistics:

$$W_k(x) = \mathbb{P}[s_{(k)} \leq x]$$

Random cluster of damages: N_c follows geometric Poisson distribution (Pólya-Aeppli)
Size Effect = Joint Effect of Horizontal and Vertical Scaling
Simulated Sample Size = 10^4

Longitudinal Scaling

- **Weakest-link rule** – the histogram shifts up by $\ln(s_2/s_1)$ if the length is increased from s_1 to s_2;

Transverse Scaling

- **Histograms rotate** about a point, Q, at a constant rate, equally for each doubling of width → **Slope increases**.
Inferring Strength Distribution from Size Effect

Strength Distribution: \(Y - y_0 = m_0[1 + c \ln(r/r_0)](X - x_0) + \ln(s/s_0) \)

Median Size Effect:

\[
\ln \sigma_{0.5} = \frac{\ln \ln 2 - y_0 - \ln D}{m_0(1 + c \ln D)} + x_0
\]

Parameters:
- \(c = 0.27 \)
- \(m_0 = 32 \)
- \(x_0 = 2.03 \)
- \(y_0 = -1.3 \)
To sum up:

- For quasibrittle materials, we need **TAIL-RISK DESIGN** (not just Mean & Standard Deviation)

- The safety factor is size dependent.

- The reliability indices (Cornell, Hasofer-Lind) have been modified.
For *quasibrittle* materials, and esp. architectured and biomimetic ones:

| Error | in safety factors | >> | Error | in computational mechanics |

because the devil is in the tail
Thanks for Listening!

Questions?

Recent book (322 pp.)

PROBABILISTIC MECHANICS OF QUASIBRITTLE STRUCTURES
Strength, Lifetime and Size Effect
Zdeněk Bažant • Jia-Liang Le