





Motivation:
Design and Control under Uncertainty
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Stochastic Formulation of Governing
Problem

e We will denote U as the state space and Z as the space of optimization
or control variables.

e Let £ be a random vector with known probability distribution.

e Consider the following parametrized, linear (PDE) problem: for fixed z €
Z, find u : 2 — U such that

M(u, 2 €) = L(E)u(€) + B()z +£€) =0 as.

e Denote a solution to our (PDE) problem as S(&; z) for given z such that

M(S(&;2),2,6) =0 as.
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Stochastic Formulation of Governing
Problem

e The differential operator satisfies the stability conditions: 3k > 0 inde-
pendent of £ € = such that for all £ € 2

o (L, v)v-v| _
weU\{0} yevrfoy  lullullvllv
ey viuyu- v =0 Nu cllz— el

7(5)2’%17 ngE

e In addition, there dxo5 > 0 independent of ¢ € = such that for all £ € =

[(L(E)u,v)v+v| < ksllu||lu]|v|lv

Duke :

UNJIYERSITY



Risk-Averse Optimization

e et p: Z > R, G:U xZ — R and note that G(S(§; 2),€£) is a random
variable.

e We seek to minimize

J(2) = R(G(S(2),8)) + p(2)
where R : X — R is a risk measure with the form

R(X) = inf {t + E[o(X — 1)]}.

e v: R — R is convex and satisfies v(0) = 0 and v(x) > = for x # 0. For
example, when v(z) = (1 — 3)"1[z]" with 8 € (0,1) and [-|]" = max{0, -},
the risk measure R is the conditional value-at-risk (CVaR)
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Conditional Value at Risk (CVaR)
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Risk-Averse Optimization Formulation

e The expectation that appears in the R is approximated by sample average
as

1 N
Efo(G(S(6;2),€) —t)] = = > v(G( &) —t)

J=1

e We incorporate t from the definition of R as an optimization variable and
solve

N
: 2 = 1
i J(t,z) where J(t,z):= {t+ N;v t)}
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Risk-Averse Optimization Formulation

AN

e Under standard assumptions, the gradient of the objective functions J
with respect to the control z is computed as

Zav S(&552),&5) —t)B(&;)" A5 + V(z)

where A; solves the adjoint equation
L(&5) N = =VuG(S(&552), &)

e Similarly, the derivative with respect to t is

VJtz—l——Z@v S(&5;2),&5) — t).
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Computational Challenges

e Evaluation of the objective and its gradient
requires N solutions of the state PDE and N
solutions of the adjoint PDE.

e Our proposed approach is two-pronged:

— Adaptive sample-based reduced basis approach
for approximating the PDE solution (provably
convergent).

— Inexact trust region framework that allows for
inexact evaluations of objective and gradient
(provably convergent).
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Sample-Based Approximations

e Take a finite set of atoms {&x,k = 1,2,...,m} with probability px > 0
such that > ;" pr = 1.

e These atoms and probabilities are chosen as to approximate the original
random variable in some sense.

S =D .,"m} generate a Voronoi-cell based partition of the sample

space = = U" 2k (E is centered at &x).
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Local reduced basis approximation

e Given z, we construct approximations of the state as
m
=) 1(£ € Eg)Sk(€, 2)
B

o S:(&,z) solves the following reduced local problem: find Sk(&,z) € Uk
such that

(M(Sk(f,z),z;f),v>v*y:0 VveV,, VE&eEC.
o Uy = span{®;} is the reduced approximation space and

Pp = [st(fkv Z)? S(fka Z)? S(&ﬁ;'z)v S(gkz; Z)v JOR S(ﬁkzv; Z)]

where S(&k,;2),5(&k,;2), ..., S(&ky; 2) are solutions at the N atoms clos-
est to &k.
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Sketch of Enriched Local Reduced Basis
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Adaptive Selection of Atoms

e Multiple techniques for a posteriori error estimation and atom selection:
residual based, Qol based on adjoints, etc.

e We used a residual-based error indicator.

I (@, - &) llv
leflv < ey

e Error decomposition thanks to the Voronoi partion,

llu] = ZE[H Mo1(€ < Ex)] ZE[eu 1(€ €Bx)l = D
=l porl

where 1 = E [e,(£)1(§ € Zk)] is the local error indicator. In a greedy
method, the next atom is selected from the cell with the largest 7.
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1D Helmholtz Problem with
Two Stochastic Dimensions

e Helmholtz Problem: Damped vibration

_ 4
dx

d
(V(:c,w)é) —dctu—Tu+ f=0, (z,w)e€D xQas.

u(0) =u(l) =0, a.s.

e Random Variables
v(z,w) =[14+3& (w)] 1(x € [0,0.5)) + [2.5 + 3&(w)] L(x € [0.5,1]).

&1 ~ Beta(1,3) and & ~ Beta(3,2) with a correlation p(&1,&2) = 0.5.
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1D Helmholtz Equation
Norm of the Solution in Parameter Space
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1D Helmholtz Equation:partition generated

Partitions generated with 10, 25, and 50 atoms and ¢=0.2
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1D Helmholtz Equation
Comparison with Sparse Grid Methods
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