Risk-Averse Optimization Formulation

e Recall, we want to solve this computationally expensive problem

min j(t,z) where j(t,z) = {t%—]i[ZU(G(S(f;Z)ag)t)}

zeZ,teR

J=1
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Inexact Trust Region Framework

Given an iterate xy = (tg,21) € X ;=R x Z,

AN

1. Model Update: Choose s new model my ~ J(xj + s).

2. Step Computation: Approximate a solution, s;, to the subprob-
lem

mi)rg mi(s) subject to ||s||x < Ag.
sE

AN

3. Objective Update: Choose a new Jy(z) ~ J(z)

4. Step Acceptance: Compute

_ Ji(@k) = Jn(@k + s)
7 m(0) — mx(58)

if Pk Z nc (0, 1), then Lk+1 — Tk S else Lh+1 — Tk

5. Trust Region Update: Choose a new trust region radius Ay..
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Inexact Trust Region Framework

To obtain global convergence, we require

1. Inexact gradient condition

AN

IVm(0) = VJ(2x)| < kmin {[[Vmg(0)[|x, Ar}
where £ > 0 is independent of k.

2. Inexact objective condition

T (z) — J(zx + sx) — (Te(@r) — Tu(@r + 55))| < Kbk
9(,;) § nmin {mk(O) 7 mk(sk),rk}

for some K > 0, n is an algorithmic parameter and
Tk 2 0 with 1imk_>oo 'l — 0

AN AN

Observation: We cannot compute J(xx) and VJ(x).

Duke We use adaptive risk-informed sampling.
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Inexact TR and Adaptive RB

e From our local RB method, we obtain surrogates of S(&;z), denoted by
Smod(&; 2) and Sop;(€; 2), to build my and Jy, respectively.

e Computable a posterior error indicators for the surrogate models.

1Smoa (&5 2) = S(&;2)llv < €moal§; 2)
1S0b3(&52) = S(&; 2)llu S €oni (&5 2)-

e Local RB for the adjoint (Ap0q(&; 2)) and its computable a posterior error
indicator:

| Amod(€;2) — A& 2) [l S €moalé; 2)-
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Inexact TR and Adaptive RB (2)

e Local Reduced Basis Models: Sp04(&;2)y Sobj(&52)s Amod(§; 2)
® Inexact Gradient Condition:

AN

IVJ(zk) — Vimg(O)]] S pibmoalé)s ze)
=l

S Cimn) = F et (& mple ety

e Inexact Objective Condition:

| Jie(z) — J(@e)] S pidoni (&5 Tn)
j=1

dobj (€55 Tk) = G(€5,: (&5 Tk))

We can satisfy these conditions by controlling the Local RB errors.
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NUMERICAL EXAMPLES
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Advection-Diffusion Control

We consider the optimal control problem

1 o
min -CVaRj; (kDS(z) - dKk3) + =
22L2I(0,1) ﬁ( (z) Y) 2

where u = S(z) solves the weak form of

- @g%(x,! )+ b(x,! )%(x,! )= 2z(x), x2(0,1), as.

uo,’y=uwu(1,)=0, as.
Here «gf are deterministic and b is the random field

b(x,!')=10.5+ «(/ )] 105 + [0.8+ «2(/ )] 1[051]

Control Ansatz:

XO
= zlp where D;= (0.1(i~ 1),0.1i)

Du
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Results for 1D Advection-Diffusion

Optimal control

——Reference
- - Inexact TR method

CDF of G under optimal control
VaR CVaR
' ) =

90%

—

G(¢&) under optimal control

Reference
1

NN E RS 1 T0X

' ' /]
- ——Reference /E

—Inexact TR method

15 20
G

G(¢) under optimal control

Inexact TR method




Results for 1D Advection-Diffusion

©

<t (aV]
(senjos 3ad #)0160|

o

Reference
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Evolution of Sampling over Optimization Run







Summary

* These are the main ingredients:
— Local basis enriched with gradient information
— A practical and effective error indicator
— Inexact trust region framework

* The cost of the reduced bases solutions does
not grow with the number of atoms added.

 We are in the process of extending this
framework to nonlinear PDEs.
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Current and Future Directions

* Treatment of physical and stochastic
dimensions in a unified framework

* Model-form uncertainty

* Treatment of imperfect knowledge on
underlying probability laws.
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Adaptive Algorithm 1

Algorithm 1: Adaptive algorithm to build Sy, and Ap,g for my

If & = 0, model initialization:

* Let & = E[£] and build the initial surrogate models S;,,q and Ap.q4 based on the solution S(&y; zg), its
gradient VS(&; zp), the adjoint solution A(&p; S(&p; zp)) and its gradient VA(&y; S(£o; 20))-

Model refinement: |

Given wi, Ax and Smod, which is recycled from step k — 1,

* Build m; with Sp.4, evaluate 6;,04(€;; wi) forall j = 1,..., N, compute E,oq(wy) and ||V (0)]|z.

* While Emud{w;;} > K min {||‘G'm;c(ﬂ}||z, .ﬂk}, do

— Select '-.E]'I.'JH..'{ = drg maﬁj:l ,,,,, N pjﬁmud{é,r'; W.ic}-
- CC‘IHPUUB S{gma:-;; zﬁ:}n ﬂ{gmax; S('fmax; zk}}: ?fsi'fma::; Ei:} and v{:h('fmax; 5{§max; fﬁ:))-
— Incorporate the new information at &yax into Smed and Ameg using the local RB method.
— Update my with Smed and Amod.
— Update 6pa(€j3we) for j = 1,..., N and E,q(wy ), and recompute || Ving (0)|[z.
End
Return S04 and Amed.
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Adaptive Algorithm 2

Algorithm 2: Adaptive algorithm to build Sgy; for T

If & = 0, model initialization:

* Let & = E[¢] and build the initial surrogate model S;,,4 based on the solution S(&g, zp), the gradient
VeS(&o, z0).

Else, model refinement:

Given wyg, si, pred;, rp and Sgyj, which is recycled from step k — 1,

1
* Compute y; = K (n min {pred,,ri })“, evaluate oy;(&;; wi), Oonj(€j; Wi + 5%) for j = 1,. .., N and compute
Eoni(wi ) and Egpj(wi + si).
* While Eqbi(wi) + Eobj(wk + si) > ¥k, do

~ Select émax = argmax;_; _n Py (Gobi(£j3 k) + Gobi (&) Wi + 5i)).
— Compute S(&maxs 2k ) ?gs{é’mﬂm 2k )s S(€maxs 2k + &i), and v.fs{'fmam Zi + {k)-
— Incorporate the new information at &, into Sobj using the local RB method.
— Update dmoq(£j; wi) and g (€3 wy + s ) for j = 1,.. ., N, update Eqpi(wy) and Eqpj(wy + 53).
End
End
Return S

Duke
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Basic Definitions

Consider a function F'(X, z), where X is random and z is deterministic.

e The cummulative distribution of F' is defined as

(z,2) = P(F(X, 2) < x)
e The  Value-at-Risk (8-VaR)
TVor = min{z : (2, 2) > B}
e The 8 Conditional-Value-at-Risk (8-CVaR)

giaR =L [F(X, 2)|F(X,z) > wﬁapj
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Conventional Trust Region Algorithm

Given A > 0, Ay € (0, A),and n € [{}, J%]:

fork=0,1,2,... e searh diecion
Obtain py by (approximately) solving (4.3); " "
Evaluate p; from (4.4);

if p, < i
1 contours of m,
Apyr = gl pell
else

if o > §and [Ipell = Ay
A1 = min(2Ag, A)

else

Arr1 = Ay

ifo, >n
Xi+1 = Xg + Py
else

P . A
k+1 k3 From Numerical Optimization,

end (for). Nocedal and Wright, Second ed.
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Numerical Example

e The regularization term is taken as
p(z) = alzlz, a>0
e The control z(x) is assumed to be piecewise constants, i.e., z(z) = > ._; 217, (x)
where I; = (0.1(i — 1),0.14),i = 1,.. ., 10.

e We used the following TR parameters: n; = 0.05, 75 = 0.75, v = 0.5,
w=0.7,x=01 K =1and Ag = 1.

e We set the penalty parameter to a = 0.1 and the number of Monte Carlo
samples to N = 4000.
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