A Posteriori Error Indicator

Define the surrogate error as $e(x, \boldsymbol{\xi}) = u^h(x, \boldsymbol{\xi}) - \bar{u}(x, \boldsymbol{\xi}) \in U^h$, which satisfies

$$a(e, v^h; \boldsymbol{\xi}) = r(\bar{u}, v^h; \boldsymbol{\xi}) \quad \forall v^h \in V^h$$

where $r(\bar{u}, v^h; \boldsymbol{\xi}) = l(v^h) - a(\bar{u}, v^h; \boldsymbol{\xi})$ is the residual. $r(\bar{u}, \cdot; \boldsymbol{\xi}) \in V^{h'}$, by Riesz representation theorem, there exists $\tilde{e} \in V^h$ such that

$$r(\bar{u}, v^h; \boldsymbol{\xi}) = (\tilde{e}, v^h)_V \quad \forall v^h \in V^h$$
$$\|r(\bar{u}, \cdot; \boldsymbol{\xi})\|_{V'} = \|\tilde{e}\|_V$$

hence $a(e, v^h; \boldsymbol{\xi}) = (\tilde{e}, v^h)_V \quad \forall v^h \in V^h$. By the discrete inf-sup condition,

$$\gamma^{h}(\boldsymbol{\xi})\|e\|_{U} \leq \sup_{v^{h} \in V^{h}} \frac{a(e, v^{h}; \boldsymbol{\xi})}{\|v^{h}\|_{V}} = \sup_{v^{h} \in V^{h}} \frac{(\tilde{e}, v^{h})_{V}}{\|v^{h}\|_{V}} \leq \|\tilde{e}\|_{V} = \|r(\bar{u}, \cdot; \boldsymbol{\xi})\|_{V'}$$

that is,

$$\|e\|_U \le \frac{\|r(\bar{u},\cdot;\boldsymbol{\xi})\|_{V'}}{\gamma^h(\boldsymbol{\xi})}$$

A Posteriori Error Indicator (2)

A candidate for the a posterior error estimator is

$$\epsilon^0_u(\boldsymbol{\xi}) := rac{\|r(ar{u},\cdot;\boldsymbol{\xi})\|_{V'}}{\gamma^h(\boldsymbol{\xi})}$$

An upper bound on $||e||_U$, could be conservative.

 $\|e(\boldsymbol{\xi})\|_U \le \epsilon_u^0(\boldsymbol{\xi}).$

Problem: expensive to compute $\gamma^h(\boldsymbol{\xi})$. Solution: develop an efficient surrogate for $\gamma^h(\boldsymbol{\xi})$, denoted by $\hat{\lambda}(\boldsymbol{\xi})$.

A Posteriori Error Indicator (3)

- We used an adaptive sparse grid approach to approximate $\hat{\lambda}(\boldsymbol{\xi})$.
- Given $\hat{\lambda}(\boldsymbol{\xi})$, we have a practical error estimator as

$$\epsilon_u(\boldsymbol{\xi}) := rac{\|r(ar{u},\cdot;\boldsymbol{\xi})\|_{V'}}{ heta \hat{\lambda}(\boldsymbol{\xi})}$$

• Even with an inaccurate $\hat{\lambda}(\boldsymbol{\xi})$, by choosing $\theta \in (0, 1)$, we can still bound the error as

 $\|e(\boldsymbol{\xi})\|_U \leq \epsilon_u(\boldsymbol{\xi})$

Adaptive Algorithm

Initialization: $\eta_k = p_k \mathbb{E}\left[\epsilon_u(\xi) \mid \xi \in \overline{\Xi}_k\right]$

- Specify the maximum number of atoms \overline{m} and the error tolerance Err_{tol} .
- Form a background set $\Xi_{bkg} := \{\xi_i, i = 1, 2, \dots, N_{bkg}\}$ consisting of a sufficiently large number of Monte Carlo samples of ξ .
- Form an initial training set $\Xi_{tr} := \{\xi_i, i = 1, 2, \dots, N_{tr}^{init}\}$ consisting of a few random samples of ξ .
- Select an initial atom $\Theta = \{\mathbb{E}[\xi]\}$ and build the initial surrogate model $\overline{u}(x,\xi)$

 $\begin{array}{l} \mbox{while } N_{\rm atom} < \overline{m} \ and \ e_{\rm max} > e_{\rm tol} \ {\rm do} \\ \mbox{Evaluate the error indicator } \epsilon_u(\xi) \mbox{ at each } \xi \in \Xi_{\rm tr}; \\ \mbox{Compute } \eta_k, k = 1, 2, \dots, N_{\rm atom} \ via \ implicit \ Voronoi \ tessellation \ of \ \Xi; \\ \mbox{Set } \overline{k} = \arg \max_{k=1,2,\dots,N_{\rm atom}} \eta_k, \ e_{\max} = \max_{k=1,2,\dots,N_{\rm atom}} \eta_k; \\ \mbox{Set } \xi_{\max} = \arg \max_{k=1,2,\dots,N_{\rm atom}} \epsilon_u(\xi), \ \Theta = \Theta \cup \{\xi_{\max}\} \ {\rm and } N_{\rm atom} = N_{\rm atom} + 1; \\ \ \varepsilon \in \Xi_{\rm tr} \cap \overline{\Xi}_{\overline{k}} \\ \mbox{Incorporate new information at } \{\xi_{\max}\} \ {\rm into \ the \ surrogate } \overline{u}(x,\xi); \\ \mbox{Draw } N_{\rm tr}^{\rm add} \ {\rm samples \ from } \overline{\Xi}_{N_{\rm atom}} \ {\rm and \ append \ them \ into } \Xi_{\rm tr}; \\ \mbox{Draw \ additional \ training \ samples \ to \ ensure} \\ \mbox{min} \ \| \Xi_{\rm tr} \cap \overline{\Xi}_k \| \ge N_{\rm tr}^{\rm add}. \\ \mbox{end} \end{array} \right.$

NUMERICAL RESULTS

1D Helmholtz Problem with Two Stochastic Dimensions

$$-\frac{d}{dx}\left(\nu(x,\omega)\frac{du}{dx}\right) - ic\tau u - \tau^2 u + f = 0, \quad (x,\omega) \in D \times \Omega \text{ a.s.}$$
$$u(0) = u(1) = 0, \quad \text{a.s.}$$

The Young's modulus of the bar is modeled as

 $\nu(x,\omega) = [1+3\xi_1(\omega)] \mathbf{1}(x \in [0,0.5)) + [2.5+3\xi_2(\omega)] \mathbf{1}(x \in [0.5,1]).$

where $\xi_1 \sim \text{Beta}(1,3)$ and $\xi_2 \sim \text{Beta}(3,2)$ with a correlation $\rho(\xi_1,\xi_2) = 0.5$. The angular frequency $\tau = 2\pi$.

1D Helmholtz Results Norm of the Solution in Parameter Space

1D Helmholtz Results: Partitions generated

Joint parameter distribution

Partitions generated with 5, 20, and 40 atoms and c=0.25

1D Helmholtz Problem Relative error statistics using 1000 MC samples

$$e_u(\xi) = \frac{\|\bar{u}(\xi) - u(\xi)\|_{L_2(\mathcal{D})}}{\|u(\xi)\|_{L_2(D)}}$$

2D Advection-Diffusion Example 31 Stochastic Dimensions

$$egin{aligned} -
abla \cdot \kappa(oldsymbol{x},\omega)
abla u(oldsymbol{x},\omega) + oldsymbol{v}(oldsymbol{x},\omega) + f(oldsymbol{x},\omega) &= 0 \ u(oldsymbol{x},\omega) = 0 \ ext{on} \ \Gamma_D \ \kappa(oldsymbol{x},\omega)
abla u(oldsymbol{x},\omega) \cdot oldsymbol{n} &= 0 \ ext{on} \ \Gamma_N \end{aligned}$$

$$\kappa = \sum_{i}^{5} \sum_{j}^{5} \phi_i(x_1) \phi_j(x_2) \xi_{5(i-1)+j}$$

where $\phi_i(x) = B_{i,5}(x)$ is a Bernstein's polynomial of order 5. ξ_k are beta-distributed, independent random variables

$$m{v}(m{x},\omega) = inom{1}{0} \xi_{26} + inom{-x_1}{x_2} \xi_{27}$$

 $\xi_{26} \sim U[10,20] \quad \xi_{27} \sim U[0,10]$

2D Advection-Diffusion Results Comparison with Sparse Grid Methods

For 5580 FE solves

1D Advection-Diffusion Example 2 Stochastic Dimensions

$$-a\frac{d^2u(x,\omega)}{dx^2} + b(x,\omega)\frac{du(x,\omega)}{dx} + f(x) = 0 \quad (x,\omega) \in [0,1] \times \Omega$$
$$u(0) = 0$$
$$u(1) = 0$$

$$b(x,\omega) = \left(b_1^0 + b_1(\omega)\right) \mathbf{1}(x \in [0,0.5)) + \left(b_2^0 + b_2(\omega)\right) \mathbf{1}(x \in [0.5,1])$$

where $b_i(\omega) \sim U([-1,1])$ and independent

In this example, $b_1^0 = 0.5$, $b_2^0 = 0.8$. The variable $b_1(\omega)$ is more influential than $b_2(\omega)$ on the solution. The latter is true especially when the value of $b_1(\omega)$ is small.

1D Advection-Diffusion Results Partitions Generated

Partition generated using input (i.e. no adaptivity)

1D Advection-Diffusion Results Moments using two approaches

5 Atoms

20 Atoms

1D Advection-Diffusion: Joint densities at x=0.9 and x=0.1

5 Atoms

20 Atoms

70

N

1D Advection-Diffusion Relative error statistics using 1000 MC samples

$$e_u(\xi) = \frac{\|\bar{u}(\xi) - u(\xi)\|_{L_2(\mathcal{D})}}{\|u(\xi)\|_{L_2(D)}}$$

