A Posteriori Error Indicator

Define the surrogate error as e(x, &) = u”(x, &) —u(x, €) € U™, which satisfies
ale,v"; &) = r(a,v"; &) Yo e V"

where (@, v"; &) = 1(v") — a(@,v"; &) is the residual. r(a@,-;€&) € V', by Riesz
representation theorem, there exists € € V" such that

r(@,v™; €) = (6,v")y Yo' e VP

lr(@, s E)llv: = lléllv

hence a(e,v";€) = (¢,v")y Vo € V. By the discrete inf-sup condition,

a(e vl € e, vP)y 7 %
e ey R
i I

that is,

Ir(@, 5 €)lv:
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A Posteriori Error Indicator (2)

A candidate for the a posterior error estimator is

_ Ir(@, s €)lv
Y (€)

An upper bound on ||e||y, could be conservative.

le(€)llo < ea(€).

Problem: expensive to compute v"(&).

eu(§) :

Solution: develop an efficient surrogate for v (&), denoted by 5\(5)
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A Posteriori Error Indicator (3)

e We used an adaptive sparse grid approach to approximate 5\(5)

e Given (&), we have a practical error estimator as

_ Ir(@ 5 9)llv
O\(E)

€u(§) :

e Even with an inaccurate A(£), by choosing 6 € (0,1), we can still bound
the error as

le(©llr < €u(€)
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Adaptive Algorithm

Initialization: e = prlE [Gu(f) e Ek]

e Specify the maximum number of atoms m and the error tolerance
{ Th el ool

e Form a background set Epkg 1= {&,7 =1,2,..., Npke} consisting of
a sufficiently large number of Monte Carlo samples of &.

e Form an initial training set =, := {&;,i = 1,2,..., N/M*} consisting
of a few random samples of &.

e Select an initial atom © = {E[¢]} and build the initial surrogate
model u(x, )

while Nyiom < ™ and epax > €to dOo
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Evaluate the error indicator €,(£) at each & € Ey,;

Compute ni, k= 1,2,..., Natom via implicit Voronoi tessellation of =;
Set k = argmax e = max y
k?:].,2g,...,Nat0m77k’ s k:]-az:"'aNatomnk,
Set gmax o arg ma_X Eu(f), @ = @ U {frnax} and Natom S Natom + 1;
geEtrﬁEE

Incorporate new information at {{.x} into the surrogate u(z, §);

Draw N24d samples from =y, and append them into Zy,;
Draw additional training samples to ensure

min | By NSy > N2dd,
k}:l,Q...,Natom

d
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NUMERICAL RESULTS
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1D Helmholtz Problem with
Two Stochastic Dimensions

d d

it (V(:U,w)£> —dctu—7Tu+ f=0, (z,w)€Dxas.
(O =Gl = s

The Young’s modulus of the bar is modeled as

v(r,w) =[14 3 (w)]1(x € [0,0.5)) + [2.5 + 3&(w)] 1(z € [0.5,1]).

where &1 ~ Beta(1,3) and & ~ Beta(3,2) with a correlation p(&1,&2) = 0.5.
The angular frequency 7 = 27.
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1D Helmholtz Results
Norm of the Solution in Parameter Space
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1D Helmholtz Results: Partitions generated

Partitions generated with 5, 20, and 40 atoms
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1D Helmholtz Problem
Relative error statistics using 1000 MC samples
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_ Ju(€)—u(&)llL, (D)
eu(8) = L,
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2D Advection-Diffusion Example
31 Stochastic Dimensions

—V - k(x,w)Vu(z,w) + v(z,w) - Vu(z,w) + f(x,w) =0
u(x,w) =0onI'p
k(x,w)Vu(x,w) - n=0on 'y

5) 5)
e Z Z ¢i(21)B;(T2)E5(i 1)+
1 J

where ¢;(x) = B; 5(x) is a Bernstein’s polynomial
of order 5.
&, are beta-distributed, independent random variables

o (é) A (;”;1)527

€26 ~ U[10,20] &7 ~ U|0,10]
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2D Advection-Diffusion Results
Comparison with Sparse Grid Methods

I ocal adaptiv'e sparse griq | Il \ocal adaptive sparse grid
Il global adaptive sparse grid : Il global adaptive sparse grid
B iocal RB B ocal RB
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1D Advection-Diffusion Example
2 Stochastic Dimensions

flx)=1,a=0.1

u(0) =0 .:— u(1) =0

b + by (w) BY + by(w)
d*u(z, du(z,
—a ﬁ; “) b(x,w) u(dxx ) fx)=0 (z,w)€|0,1] xQ
u(0) =
an=

b(z,w) = (bg’ + by (w)) 1(z € [0,0.5)) + (bg + bg(w)) 1(z € [0.5,1))
where b;(w) ~ U([—1,1]) and independent

In this example, bY = 0.5, = 0.8. The variable b;(w) is more influential than
ba(w) on the solution. The latter is true especially when the value of by (w) is
small.
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1D Advection-Diffusion Results
Partitions Generated

Partition generated using input (i.e. no adaptivity)
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1D Advection-Diffusion Results
Moments using two approaches
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1D Advection-Diffusion:
Joint densities at x=0.9 and x=0.1
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1D Advection-Diffusion
Relative error statistics using 1000 MC samples
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