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fast)
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A. De Vita and R. Car, MRS Proc 491, 473 (1998) 
G Csányi et al. Phys. Rev. Lett. 93 175503 (2004) 

Force-based hybrid approach (cf. QM/MM)

✓Embedding relies on locality of forces,  
≲1nm in many covalent and metallic materials

✓Get QM forces right on a moving region, 
giving accurate trajectories

✓Add chemical complexity (or electronic effects) 
near tip: wide range of chemomechanical 
problems in reach

✓Temperature/free energy effects can be included

QUIP code:  
    https://github.com/libAtoms/QUIP

JR Kermode et. al.  Nature 455 1224 (2008) 
N Bernstein et al. Rep. Prog. Phys. 72 026501 (2009)

https://github.com/libAtoms/QUIP
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Silicon (110) cleavage, partial dislocation + stacking fault – C. Gattinoni et al., In Prep (2018)



Rare events using QM/MM Virtual Work
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timescales that are far too slow for direct dynamical sim-
ulations at the QM level. Understanding this dislocation
response is well recognized as key to rcontrolling material
properties[14]. While multiscale embedding approaches
like LOTF enable dynamical simulations to be carried
out in materials systems large enough to correctly cap-
ture the e↵ects of mechanical load, the timescales that
can be simulated are still limited to those accessible by
the QM approach, typically of the order of a few picosec-
onds for DFT, much slower than plasticity timescales. As
a result it is necessary to determine rare event rates using
transition state theory[15], for which the ability to cal-
culate energy barriers is essential, using, e.g. the nudged
elastic band (NEB) method[16].

In this paper we detail a general solution to the prob-
lem of extracting energy barriers from hybrid simulation
schemes without a total energy function. We exploit the
fact that ionic forces in both the classical and quantum
region are well defined and localised, allowing us to apply
the principle of virtual work to construct energy barri-
ers for a given configurational pathway. Combining this
principle with the nudged elastic band routine for finding
minimum energy pathways allows the calculation of en-
ergy barriers in systems much larger than can be treated
in periodic DFT supercells. We demonstrate our method
on two such problems, kink formation on h100i edge dis-
locations in Mo and lattice trapping barriers to brittle
fracture in Si.

QM/MM SIMULATION SCHEME

A prototypical hybrid simulation scheme is shown in
figure 1. To provide correct forces on atoms in the quan-
tum mechanical (QM) region, at each force call a DFT
calculation is performed which contains the QM region, a
surrounding ‘bu↵er’ region and a vacuum layer to remove
periodic image e↵ects. The presence of free surfaces in
the DFT supercell induces electronic (though not elas-
tic) surface states, whose e↵ects must be contained to
the bu↵er region, which in practice determines the bu↵er
width. For insulators dangling bonds are created whose
e↵ects can be suppressed through hydrogen bond termi-
nation, whilst in metals a charge dipole is induced with
decaying Friedel oscilations[17]. As the bu↵er region is
treated in DFT only to provide correct forces in the QM
region, forces on atoms in the bu↵er (and bulk) region
are given by the classical force field, a coupling scheme
known as abrupt force mixing[10].

For hybrid simulation schemes to produce accurate re-
sults, the quantum/classical transition region should typ-
ically be only weakly deformed by the presence of the
defect, such that an interatomic potential with identical
elastic properties and lattice constants ((Bcl, acl)) to the
DFT system (Bqm, aqm) would give an identical mechan-
ical response. However, whilst modern interatomic po-

tentials typically reproduce DFT elastic properties well
the agreement is not perfect as a result, the atomic po-
sitions that are sent to the DFT calculation are scaled
by a factor ↵ = aqm/acl such that atoms in a perfect
bulk lattice should be fully relaxed in both systems. In
addition, using the classical and quantum bulk moduli
Bcl and Bqm to represent the elastic properties of each
medium, the classical atomic forces are scaled by a factor
↵
3
�, where � = Bqm/Bcl. A derivation of this scaling is

given in the supplementary material.
Our QM/MM implementation was performed in the

Atomic Simulation Environment[13], using LAMMPS[18]
to generate classical interatomic forces and VASP[19]
to perform DFT simulations using projected augmented
wave pseudopotenitals[20]. To test the force mixing
scheme and bu↵er size we first considered a perfect fcc
lattice of aluminium, using an embedded atom method
(EAM) interatomic potential by Liu et al.[21]. The QM
region was a cube of 13 atoms, with a bu↵er region of
width w containing all atoms within a distance w from
an atom in the QM region. In this instance the total DFT
system is a free cluster meaning only a �-point calcula-
tion is required, with a plane wave cuto↵ of 320eV. As
there should be no residual forces on atoms in a perfect
lattice configuration, we measured the total magnitude of
atomic forces on all atoms in the QM region with bu↵er
size. As shown in figure 1, convergence was achieved for
a bu↵er width of 6.5Å, or around three atomic layers,
with the total residual atomic force in the QM region
being around 10�3eV/Å, well below the tolerance of at
most 10�2eV/Å per atom used during structural minimi-
sation.

VIRTUAL WORK METHOD

Consider a system of N atoms with atomic positions
X 2 R3N and forces F(X) 2 R3N obtained through appli-
cation of the hybrid scheme described above. The virtual
work principle states that the energy �E(r) required to
traverse a pathway U(r) 2 R3N in configuration space is
given by

�E(r) = �
Z U(r)

U(0)
dX ·F(X) = �

Z r

0
dr0

@U

@r0
·F(r0), (1)

where F(r) ⌘ F(U(r)). When the force is a gradient field
of some energy function V (X) it is simple to show that
�E(r) = V (U(r)) � V (U(0)). We have implemented
the virtual work principle in a modified nudged elas-
tic band constrained minimisation routine[16], evaluating
U(r) from a splined set of (possibly unconverged) NEB
knots, using (1) to extract energy di↵erences along the
pathway. In the NEB routine an energy functional is only
required to define the climbing image and, in some vari-
ations of the method, to determine the finite di↵erence

Use hybrid forces with NEB; fit splines to 
forces F and displacements U, compute 
energy differences via

Peierls barrier for an
[100]<100> edge dislocation in bcc Mo
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