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scribed by most models. For the third class of verifi-
cation tests, formation energies of vacancy and intersti-
tial point defects, we see a wide range of errors across
the models evaluated. The new GAP model again pre-
dicts all these quantities within 10% of the reference DFT
results. In general, for any particular property there
is often a model that provides an accurate description
but apart from GAP, we are not aware of any model
that provides uniform accuracy across the whole range
of properties in Fig. 1. The typical spread between DFT
exchange-correlation functionals for structural and vibra-
tional properties of silicon is much smaller; for example
Ref. 151 reports only around a 1% variation in Si lat-
tice constants and fundamental phonon frequencies over
a wide range of XC functionals.

Moving to more stringent tests of the new model, we
considered a set of planar defects which were not repre-
sented in the training set (right hand group in Fig. 1),
namely the (112)⌃3 symmetric tilt grain boundary, and
unstable stacking fault energies on the (111) shu✏e plane

�(s)
us and (111) glide plane �(g)

us . For these tests the ac-
curacy of the GAP model is reduced, but still within
20% of DFT, comparing favourably with all other mod-
els, some of which included stacking fault values in their
training sets (e.g., EDIP). Moreover, the ability of the
GAP model to provide an estimated error along with its
predictions allows us to qualitatively assess the expected
reliability of the model for particular classes of configura-
tions. Figure 2 shows the predicted errors for each atom
in the vacancy, shu✏e, glide and grain boundary config-
urations. For the vacancy, the confidence of the model
is high on all atoms (blue colour), and the corresponding
accuracy with respect to DFT is high. The reduced confi-
dence close to the planar defects (red atoms) is consistent
with the larger errors made for these configurations and
the fact that the database does not include any similar
atomic environments.

The rest of the paper is organised as follows. In
section II we give an overview of the potential fitting
methodology and the construction of the database. In
section III we report on extensive tests that serve to ver-
ify that those properties which the database is explicitly
designed to capture are indeed correctly predicted. This
includes equations of state, average structural properties
of liquid and amorphous states, point defect energetics,
surface reconstructions, and crack tip geometries. In sec-
tion IV, we validate the model by showing predictions
for properties that are deemed fundamental for mod-
eling this material, but for which the database makes
no special provision. This includes thermal expansion,
di-interstitials, grain boundaries and random structure
search. We finally give a brief outlook in section V.

II. METHODOLOGY

A. Potential fitting

The interatomic potential, even after assuming a finite
interaction radius, is a relatively high dimensional func-
tion, with dozens of atoms a↵ecting the energy and force
on any given atom at the levels of tolerances we are in-
terested in (around a meV/atom). However, much of the
interaction energy (in absolute magnitude) is captured
by a simple pair potential, describing exchange repulsion
of atoms at close approach and potentially the chemical
bonding in an average sense farther out. In anticipation
of the kernel approach for fitting the interatomic poten-
tial, the pair potential also serves a useful purpose from
the numerical e�ciency point of view, because the ex-
change repulsion it takes care of is a component of the
potential that is very steep, in comparison with the bond-
ing region, and such disparate energy scales are di�cult
to capture with a single kernel in high dimensions.

In the present case we chose a purely repulsive pair
potential, given by cubic splines that were fitted to the
interaction of a pair of Si atoms, computed using DFT.
This leaves the description of the attractive part entirely
for the many-body kernel fit.

We start by giving a concise account of the Gaussian
Approximation Potential kernel fitting approach, as we
use it here. The total GAP model energy for our system
is a sum of the pre-defined pair potential and a many
body term which is given by a linear sum over kernel
basis functions64,

E =
X

i<j

V (2)(rij) +
X

i

MX

s

↵sK(Ri,Rs), (1)

where i and j range over the number of atoms in the
system, V (2) is the pair potential, rij is the distance be-
tween atoms i and j, K is a kernel basis function defined
below, and Ri is the collection of relative position vec-
tors corresponding to the neighbours of atom i which we
call a neighbourhood. The last sum runs over a set of M
representative atoms, selected from the input data set,
whose environments have been chosen to serve as a basis
in which the potential is expanded; more on this below.

The value of the kernel quantifies the similarity be-
tween neighbourhoods (in the Gaussian process literature
it is a covariance between values of the unknown function
at di↵erent locations), which is largest when its two ar-
guments are equal, and smallest for maximally di↵erent
configurations. The degree to which the kernel is able to
capture the variation of the energy with neighbour config-
uration will determine how e�cient the above fit is. The
better the correspondence, the fewer representative con-
figurations are needed to achieve a given accuracy. It also
helps tremendously if exact symmetries of the function to
be fitted are already built into the form of the kernel. For
an interatomic potential, we need a kernel that is invari-
ant with respect to permutation of like atoms, and 3D
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rotations of the atomic neighbourhood. Note that trans-
lational invariance is already built in, because the kernel
fit is applied to each atom individually—this very natu-
ral decomposition of the total energy is customary when
fitting interatomic potentials, and is directly analogous
with the spatial decomposition of convolutional neural
networks152.

Here we use the SOAP kernel7,8. We start by repre-
senting the neighbourhood Ri of atom i by its neighbour
density,

⇢i(r) =
X

i0

fcut(rii0)e
�(r�rii0 )/2�

2
atom (2)

where the sum ranges over the neighbours i0 of atom i
(including itself), fcut is a cuto↵ function that smoothly
goes to zero beyond a cuto↵ radius rcut, and �atom is a
smearing parameter, typically 0.5 Å. Invariance to rota-
tions is achieved by constructing a Haar integral over the
SO(3) rotation group7. The SOAP kernel between two
neighbour environments is the integrated overlap of the
neighbour densities, squared, and then also integrated
over all possible 3D rotations,

K̃(Ri,Rj) =

Z

R̂2SO3

dR̂

����
Z

dr⇢i(r)⇢j(R̂r)

����
2

(3)

To obtain the final kernel, we normalise and raise to a
small integer power,

K(Ri,Rj) = �2

������
K̃(Ri,Rj)q

K̃(Ri,Ri)K̃(Rj ,Rj)

������

⇣

(4)

with ⇣ = 4 in the present case. The � hyperparameter
corresponds to the energy scale of the many body term,
and we use � = 3 eV, commensurate with typical at-
omization energy/atom. The accuracy of the fit is not
particularly sensitive to this parameter.

In practice, we do not evaluate the above integrals di-
rectly, but expand the neighbour density in a basis of
spherical harmonics Ylm(r̂) and radial functions gn(r) (we
use equispaced Gaussians, but the formalism works with
any radial basis),

⇢i(r) =
X

nlm

ci
nlm

Ylm(r̂)gn(r). (5)

The following spherical power spectrum vector (hence-
forth termed the “SOAP vector”) is a unique, rota-
tionally and permutationally invariant description of the
neighbour environment,

p̃i
nn0l =

lX

m=�l

ci⇤
nlm

ci
n0lm (6)

pi = p̃i/|p̃i| (7)

and the SOAP kernel can be written as its scalar product,

K(Ri,Rj) = �2|pi · pj |⇣ , (8)

The coe�cients ↵s in Eq. 1 are determined by solving
a linear system that is obtained when available data are
substituted into the equation, as we detail below. In the
present case these data take the form of total energies and
gradients (forces and stresses) corresponding to small and
medium sized periodic unit cells, calculated using density
functional theory.
We also need an algorithm to select the set of represen-

tative environments over which the sum in Eq. 1 is taken.
This could be done by simple random sampling, but we
find it advantageous to use this freedom to optimise inter-
polation accuracy. One approach to this is to maximise
the dissimilarity between the elements of the representa-
tive set153, such that the small number of environments
best represent the variety of the entire set. Here we use a
matrix reconstruction technique called CUR154 and ap-
ply it to the rectangular matrix formed by the concatena-
tion of SOAP vectors corresponding to all the neighbour
environments appearing in the input data. The CUR
decomposition leads to a low rank approximation of the
full kernel matrix using only a subset of its rows and
columns155.
There are two factors that complicate the determina-

tion of the vector of linear expansion coe�cients, ↵. The
first is that atomic energies are not directly available from
density functional theory, and the second is the presence
of gradients in the input data. The following treatment
addresses both of these. We denote the number of atoms
in the input database with N , and define y as the vector
with D components containing the input data: all total
energies, forces and virial stress components in the train-
ing database, and y0 as the vector with N components
containing the unknown atomic energies of the N atomic
environments in the database, and L as the linear dif-
ferential operator of size N ⇥ D which connects y with
y0 such that y = LTy0. After selecting M representa-
tive atomic environments (with M ⌧ N), the regularised
least-squares solution for the coe�cients in Eq. 1 is given
by156,157

↵ =
⇥
KMM +KMNL⇤�1LTKNM

⇤�1
KMNL⇤�1y,

(9)
where KMM is the kernel matrix corresponding to the
M representative atomic environments (with matrix ele-
ments from Eq. 8), KMN is the kernel matrix correspond-
ing to the representative set and all of the N environ-
ments in the training data, and the elements of the diag-
onal matrix ⇤�1 represent weights for the input data val-
ues. The Bayesian interpretation of the inverse weights
are expected errors in the fitted quantities. While tak-
ing ⇤ = �2

⌫
I with an empirical value for �⌫ would be

su�cient to carry out the fit, this interpretation makes
it straightforward to set sensible values. The expected
errors are not just due to lack of numerical convergence
in the electronic structure calculations, but also include
the model error of the GAP representation, e.g., due to
the finite cuto↵ of the local environment. Our informed
choices for these parameters are reported in Table I.

7

rotations of the atomic neighbourhood. Note that trans-
lational invariance is already built in, because the kernel
fit is applied to each atom individually—this very natu-
ral decomposition of the total energy is customary when
fitting interatomic potentials, and is directly analogous
with the spatial decomposition of convolutional neural
networks152.

Here we use the SOAP kernel7,8. We start by repre-
senting the neighbourhood Ri of atom i by its neighbour
density,

⇢i(r) =
X

i0

fcut(rii0)e
�(r�rii0 )/2�

2
atom (2)

where the sum ranges over the neighbours i0 of atom i
(including itself), fcut is a cuto↵ function that smoothly
goes to zero beyond a cuto↵ radius rcut, and �atom is a
smearing parameter, typically 0.5 Å. Invariance to rota-
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For several systems below, we include results on the
predicted error, the measure of uncertainty intrinsic to
our interpolated potential energy surface. These come
from the Bayesian view of the above regression proce-
dure, in which the data (and the predicted values) are
viewed as samples from a Gaussian process whose covari-
ance function is the chosen kernel function64. The mean
of this Gaussian process is of course just the second term
of the predicted energy, Eq. 1, and the predicted variance
of the atomic energy for atom i is given by

K(Ri,Ri)� kT (KMM + �eI)
�1k (10)

where the element s of the vector k is given byK(Ri,Rs),
the covariance between the environment of atom i and
the environments of the representative atoms s in the
database. The above is a simplified error estimate, in
which we regularise using the parameter �e, typically set
to 1 meV (equal to the value used for the per-atom energy
data components of ⇤ for most of the database in Eq. 9),
rather than using the more complicated regularisation as
in Eq. 9. We interpret this variance as the (square of the)
“one sigma” error bar for the atomic energies.

B. Database

The database of atomic configurations (periodic unit
cells) is described in Table I. It was built over an ex-
tended period, using multiple computational facilities.
The kinds of configurations that we included were cho-
sen using intuition and past experience to guide what
needs to be included to obtain good coverage pertain-
ing to a range of properties. The number of configura-
tion in the final database is a result of somewhat ad-hoc
choices, driven partly by the varying computational cost
of the electronic structure calculation, and partly by ob-
served success in predicting properties, signalling su�-
cient amount of data. Each configuration yields a total
energy, six components of the stress tensor and 3 force
components for each atom. The database therefore has
a total of 531710 pieces of electronic structure data. We
represent the diversity of atomic neighbourhoods using
M = 9000 representatives (see Eq. 1), and the number
of these picked from each of the structure types by the
CUR algorithm is also shown in the table.
We used the Castep software package158 as our den-

sity functional theory implementation, and manual cross-
checking was done to ensure that the calculations are con-
sistent between di↵erent computers. The main parame-
ters of the electronic structure calculation were as follows:
PW91159 exchange-correlation functional (the choice was
motivated by the existence of large scale simulation of the
melting point with this functional), 250 eV plane wave
cuto↵ (with finite basis corrections), Monkhorst-Pack k-
point grids with 0.03 Å�1 spacing (corresponding to a
603 grid in the primitive cell), ultrasoft pseudopotentials,
and 0.05 eV smearing of the electronic band filling. The

remaining numerical error is dominated by the finite k-
point grid, leading to errors on the order of a few meVs
per atom. The reference data for testing purposes was
calculated with the parameters kept the same, except for:
bulk energy-volume curves, which used a k-point spac-
ing of 0.015 Å�1; the re-optimisation of IP minima of
amorphous configurations (Table II) which used a k-point
spacing of 0.07 Å�1; and molecular dynamics of the liq-
uid, whose parameters are given further below. The high
k-point densities above might surprise some readers, but
we found it necessary in order to converge values of the
virial stress.
While we focus our e↵orts here on testing the GAP for

its predictions for scientifically interesting observables,
we have also evaluated the global distribution of force
errors relative to DFT calculations. The results for all
the potentials evaluated on the GAP fitting database, as
well as for the GAP on a simple testing database (distinct
from the fitting database) are shown in Fig. 3. The GAP
shows much lower force errors than any other potential
tested, with a median of about 0.025 eV/Å, an order
of magnitude smaller than for the analytical potentials.
The testing database, which consists of a grain boundary,
6 di-interstitials, the unrelaxed and relaxed shu✏e and
glide generalized stacking fault paths, and an amorphous
configuration, shows very similar distribution of force er-
ror, although the actual errors are strongly dependent on
the type of geometry, so changing the proportions of each
could change the resulting distribution somewhat.
Note that the testing database for Fig. 3 is not the re-

sult of a usual random split into training and test sets,
but represents extrapolation into configurations entirely
di↵erent from those in the training database. This is a
more stringent test than the usual split. Since the empiri-
cal analytical potentials have not been fit to our database,
the latter serves as a test for the potentials. It is remark-
able how good the analytical potentials’ predictions are
for macroscopic properties, which are mostly energy dif-
ferences, given the large force errors shown here.

C. Convergence

Since the principal goal of machine learned interatomic
potentials is to enable the prediction material properties
by fitting the Born-Oppenheimer potential energy sur-
face, it is interesting to consider the convergence of such
a potential. The expectation is that a closer match of
the potential energy surface will result in more accurate
predictions. While a comprehensive convergence study
is beyond the scope of this work, there are simple con-
vergence parameters in the SOAP/GAP framework that
directly control the tradeo↵ between computational cost
and accuracy of the fit. One is the number M of rep-
resentative environments (e↵ectively the number of basis
functions in the regression), the other is the truncation of
the spherical harmonic and radial basis expansion of the
atomic neighbour density (Eq. 5). Figure 4 shows the

Posterior variance (over an effective ensemble 
of potentials trained on same data) is analytic:

Gaussian Approximation Potential (GAP) framework – data-driven Gaussian Process model,  
trained from DFT data via SOAP representation of atomic environments  
(~2.5k configs, ~170k atomic enviroments, sparsified to 9k)
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(s) (g)
us us

Model Elastic props. / GPa Surfaces / J/m2 Point defects / eV Planar defects / J/m2

B c11 c12 c44 (111) (110) (100) vac hex. int. tetr. int. db int. (112) ⌃3 �(s)
us �(g)

us

DFT reference 88.6 153.3 56.3 72.2 1.57 1.52 2.17 3.67 3.72 3.91 3.66 0.93 1.61 1.74

Relative error [%]
GAP 0 -3 4 -8 -2 -1 -2 -2 -3 -7 -2 3 -16 13
EDIP 14 12 16 -4 -34 -14 -3 -12 14 6 -4 5 -14 -2
Terso↵ 10 -7 34 -10 -24 -0 4 13 27 -7 32 -1 -23 10
Purja Pun 14 11 17 7 -29 -11 1 5 8 -22 -10 9 -32 37
MEAM 7 -11 31 -26 -22 -1 4 -8 -14 -23 -14 25 -26 45
SW 14 -1 36 -26 -14 9 8 -27 77 28 22 30 -46 77
ReaxFF 26 7 51 -11 -5 19 -23 28 24 34 8 55 5 75
DFTB 11 4 21 -4 1 10 10 15 74 69 35 57 27 49

FIG. 1. Comparison of percentage errors made by a range of interatomic potentials for selected properties, with respect to
our DFT reference. Those on the left of the break in the axis are interpolative, i.e., well represented within training set of
the GAP model: elastic constants (bulk modulus B, sti↵ness tensor components Cij), unreconstructed (but relaxed) surface
energies ((111), (110), and (100) low-index surfaces), point defect formation energies (vacancy, and hexagonal, tetrahedral, and
dumbbell interstitials); while the planar defects to the right are extrapolative: (112)⌃3 symmetric tilt grain boundary, and

unstable stacking fault energies on shu✏e plane �(s)
us and glide plane �(g)

us ). The first row in the corresponding table shows
reference quantities computed with DFT (units indicated in header row).

dent interatomic potential127 (EDIP), modified embed-
ded atom method128,129 (MEAM), ReaxFF115,130, and
screened Terso↵131,132. EDIP uses the local coordination
of each atom to approximate a bond order (a chemical
concept that is also integral to the Terso↵ potential), and
change the preferred bond length, strength, and bond an-
gle correspondingly. MEAM is an angle dependent func-
tional form that evolved out of the simpler embedded
atom method, mainly used for metals. It was first ap-
plied to silicon with a first-neighbor cuto↵ distance by
Baskes et al.133, and later reparametrized several times
with di↵erent choices of fitting quantities and interaction
cuto↵s129,134,135. Here we use the second-neighbor cuto↵
parameterization due to Lenosky et al.129 The ReaxFF
form was originally developed in the context of computa-

tional chemistry to describe reactions of molecules, and
the silicon potential we use130 was previously used to
simulate brittle fracture115. The screened Terso↵ form
(Terso↵Scr) was developed by Pastewka et al., who mod-
ifed the Terso↵ functional form with a screening term
to improve its performance for fracture properties131,132,
where bonds are broken and formed. Finally, Purja Pun
and Mishin took the modified Terso↵ form developed by
Kumagai et al.136 and optimized it for a wide range of
properties126. We compare the results of GAP to these
interatomic potential models (EDIP, MEAM, Purja Pun,
ReaxFF, SW, Terso↵, and Terso↵Scr), and also to the
density-functional tight-binding (DFTB) method137–139.
The inclusion of a tight binding (TB) model in the

above list is essential because TB represents a mid-

Environments 
not represented 
in training setEnvironments 

represented 
in training set

> 0.005 eV

< 0.001 eV

(111) shuffle

0.5 eV/Å

(111) glide

(112) Σ3

Vacancy
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X

i0
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�(r�rii0 )/2�

2
atom (2)
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Z
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����
Z

dr⇢i(r)⇢j(R̂r)

����
2

(3)
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������
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������

⇣

(4)
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use equispaced Gaussians, but the formalism works with
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X

nlm
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nlm
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The following spherical power spectrum vector (hence-
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p̃i
nn0l =

lX

m=�l

ci⇤
nlm

ci
n0lm (6)

pi = p̃i/|p̃i| (7)

and the SOAP kernel can be written as its scalar product,
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columns155.
There are two factors that complicate the determina-
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density functional theory, and the second is the presence
of gradients in the input data. The following treatment
addresses both of these. We denote the number of atoms
in the input database with N , and define y as the vector
with D components containing the input data: all total
energies, forces and virial stress components in the train-
ing database, and y0 as the vector with N components
containing the unknown atomic energies of the N atomic
environments in the database, and L as the linear dif-
ferential operator of size N ⇥ D which connects y with
y0 such that y = LTy0. After selecting M representa-
tive atomic environments (with M ⌧ N), the regularised
least-squares solution for the coe�cients in Eq. 1 is given
by156,157

↵ =
⇥
KMM +KMNL⇤�1LTKNM

⇤�1
KMNL⇤�1y,

(9)
where KMM is the kernel matrix corresponding to the
M representative atomic environments (with matrix ele-
ments from Eq. 8), KMN is the kernel matrix correspond-
ing to the representative set and all of the N environ-
ments in the training data, and the elements of the diag-
onal matrix ⇤�1 represent weights for the input data val-
ues. The Bayesian interpretation of the inverse weights
are expected errors in the fitted quantities. While tak-
ing ⇤ = �2

⌫
I with an empirical value for �⌫ would be

su�cient to carry out the fit, this interpretation makes
it straightforward to set sensible values. The expected
errors are not just due to lack of numerical convergence
in the electronic structure calculations, but also include
the model error of the GAP representation, e.g., due to
the finite cuto↵ of the local environment. Our informed
choices for these parameters are reported in Table I.
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Gaussian Approximation Potential (GAP) for silicon – data-driven model, with  
per-atom predicted errors from variance of posterior probability distribution

Figure 2: (a) The tilt angle of dimers on the reconstructed Si(100) surface (STM image left (16),
SOAP-GAP relaxed structure right) are the result of a Jahn-Teller distortion, predicted to be
about 19� by DFT and SOAP-GAP. Empirical force fields show no tilt. (b) The Si(111)-7⇥7
reconstruction is an iconic example of the complex structures that can emerge from the interplay
of different quantum mechanical effects (left: STM image (17), right: SOAP-GAP relaxed
structure colored by predicted local energy error when using a training set without adatoms);
(c) reproducing this delicate balance and predicting that the 7 ⇥ 7 is the ground-state structure
is one of the historical successes of DFT: a SOAP-based machine-learning model is the only
one that can describe this ordering, while widely used forcefields incorrectly predict the un-
reconstructed surface (dashed lines) to a lower energy state.

atomic energy function being a GPR fit using the SOAP kernel as its basis. Given that the

available observations are total energies and their derivatives with respect to atoms (forces), the

learning machine provides us with the optimal decomposition of the quantum mechanical total

energy into atomic contributions. In keeping with the nomenclature of the recent literature,

we call a GPR model of the atomistic potential energy surface a “Gaussian Approximation

Potential” (GAP), and a “SOAP-GAP model” is one which uses the SOAP kernel.

Other choices of P are possible and will make sense for various applications. For example,

setting P to be the permutation matrix that maximises the value of K corresponds to the “best

match” assignment between constituent atoms in the two structures that are compared. It is

possible to smoothly interpolate between the average and best match kernels using an entropy-

regularised Wasserstein distance (18) construction.

6
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Uncertainty Quantification for the Silicon GAP model


