Nested Multiscale Simulations

Our Approach For UQ & UP in Multiscale Simulations

- Modeling uncertainties sources and their spatial variations via spatial random processes (SRPs)
- Coupling SRPs across length-scales via top-down sampling
- Creating metamodels of homogenized constitutive relations w microstructure variations

Multi-Response Gaussian Processes (MRGPs) for Quantifying Correlated Uncertain Sources

Top-down Sampling

Hyperparameters of the MRGP at the higher scale are considered as the responses of the MRGP at the lower scale.

Sensitivity Analysis of Cascaded Effects to the Mesoscale: Moduli

- 1. Fiber volume fraction:
- The **average** (\bar{v}) is important.
- Spatial variations are not important.

2. Misalignment angle:

- The average zenith angle $(\bar{\theta})$ is important.
- Spatial variations of θ are **not** important.
- The average and spatial variations of azimuth angle (φ) are **not** important.

NOTE: Each point in the figure is averaged over 30 simulations

- Sensitivity analyses for dimension reduction: Identify the hyperparameters that affect the homogenized response of a woven RVE:
 - β important \rightarrow Mean values important
 - Σ or ω important \rightarrow Spatial variations important

Microscale & Mesoscale Metamodels

Micro: Predicting the stiffness matrix of a UD- RVE for any values of ${}^{3}\bar{v}$, E_{f} , E_{m} .

- **MRGP training:** 30 to 80 samples
- Validation: 20 samples

Meso: Predicting the stiffness matrix of a woven-RVE for any values of α , $2\bar{\nu}$ and $2\bar{\theta}$.

- MRGP training: 10 to 60 samples ٠
- Validation: 20 samples ٠

Stiffness Matrix of UD-RVE

Stiffness Matrix of the Woven RVE

${}^{2}\overline{\boldsymbol{C}} = \begin{bmatrix} C_{1} \\ C_{7} \\ C_{11} \\ C_{13} \\ 0 \\ 0 \end{bmatrix}$	$C_7 \\ C_2 \\ C_8 \\ C_{12} \\ 0 \\ 0$	$C_{11} \\ C_8 \\ C_3 \\ C_9 \\ 0 \\ 0$	$C_{13} \\ C_{12} \\ C_{9} \\ C_{4} \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ C_{5} \\ C_{10} \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ C_{10} \\ C_{6} \end{array} $	
--	---	---	---	---	--	--

Prediction Error

Uncertainty Impacts at the Macroscale

16

Effect on local stress in the mid-section

• The coefficient of variation $\frac{60}{600} \times 100 = 10\%$.

Comparison of Macroscale Stress Fields

- Ref: Reference solution without any spatial variations.
- Spatial variations of yarn angle are more important than the other parameters.
 - Correlated spatial variations result in higher stress values.
 - The only difference between the cases is spatial variations (i.e., the averages are the same).

Remarks on Our Approach

- Non-intrusive: No need to edit the finite element codes
- Uncertainty Sources: Accounting for multi-response non-stationary uncertain sources
- Multiscale: Effect of micro and meso uncertainties on macro response
- **Physical insights:** MRGP hyperparameters can be directly linked to physical parameters and physical constraints
- Impact: Uncertain impact will be more critical for nonlinear behavior