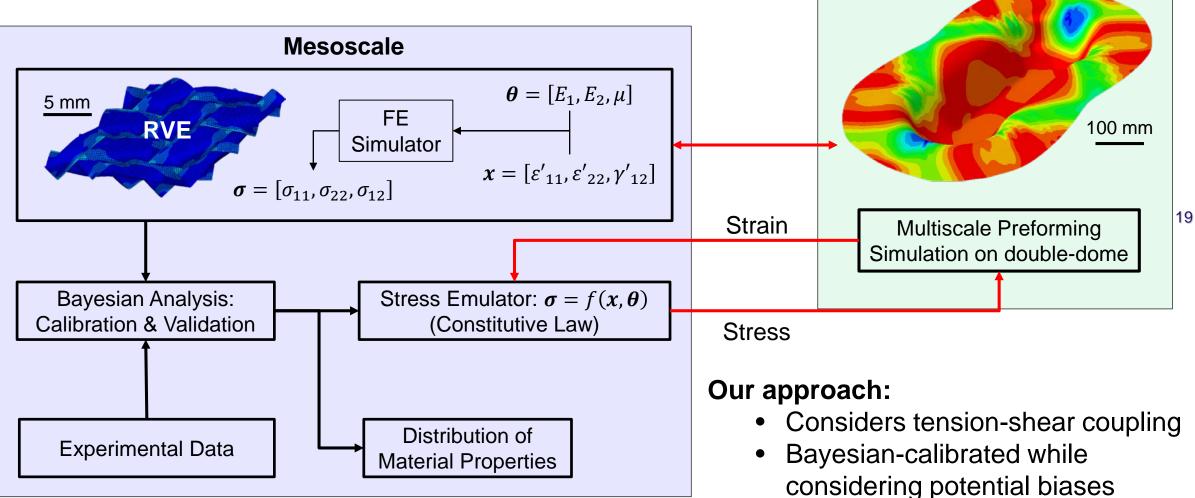
Bayesian-Calibrated Material Model With Tension-Shear Coupling

Prior works:

- Neglect mesoscale tension-shear coupling
- Least-squares calibration or neglecting the potential model bias



Macroscale

Bayesian Analysis of Computer Simulators

x:

θ:

ε:

A Bayesian framework enables:

(*i*) Considering various uncertainty sources

(*ii*) Obtaining posterior joint distributions as opposed to a single value

(*iii*) Considering potential simulator discrepancy.

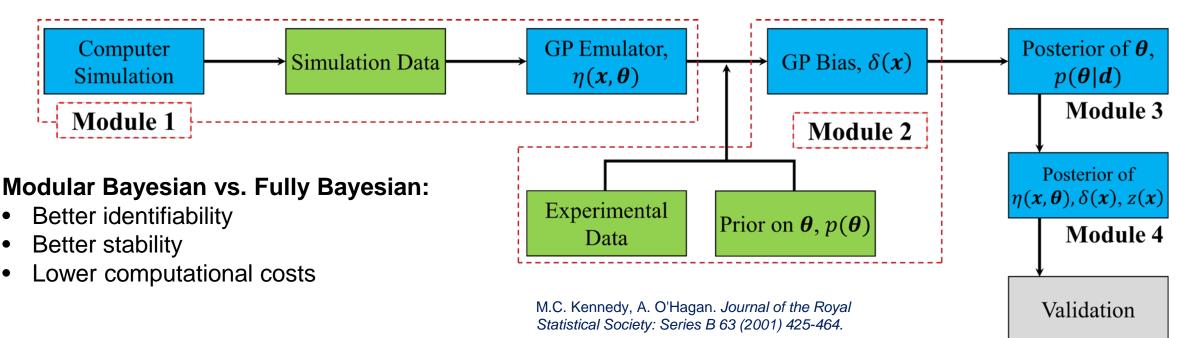
 $z(\mathbf{x}) = \eta(\mathbf{x}, \boldsymbol{\theta}) + \delta(\mathbf{x}) + \varepsilon$ $z(\mathbf{x}): \text{ True Physical (Preforming) Process}$ $\eta(\mathbf{x}, \boldsymbol{\theta}): \text{ FE (low fidelity) Simulator}$

Controllable Inputs, $[\varepsilon'_{11}, \varepsilon'_{22}, \gamma'_{12}]$

- Calibration Parameters, $[E_1, E_2, \mu]$
- $\delta(x)$: Discrepancy Function
 - White noise

Sources of Uncertainty:

- Parameter Uncertainty
- Model Discrepancy
- Interpolation Uncertainty
- Experimental Uncertainty



Posterior of the Calibration Parameters

Fitting $\eta(x, \theta)$:

• Replacing the simulator with a multi-response Gaussian process (MRGP) metamodel that predicts $\boldsymbol{\sigma} = [\sigma_{11}, \sigma_{22}, \sigma_{12}]$ as a function of $\boldsymbol{x} = [\varepsilon'_{11}, \varepsilon'_{22}, \gamma'_{12}]$ and $\boldsymbol{\theta} = [E_1, E_2, \mu]$.

 $0 \le \gamma'_{12} \le 1$

 $5 \le E_2 \le 25 MPa$

Priors:

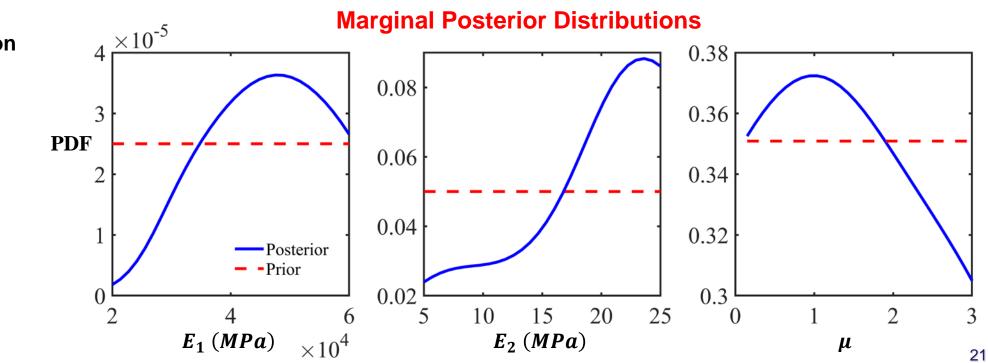
• $\delta(x)$: Smooth Gaussian process

• *θ*: Uniform distribution

 $0.15 \le \mu \le 3$

Input Ranges:

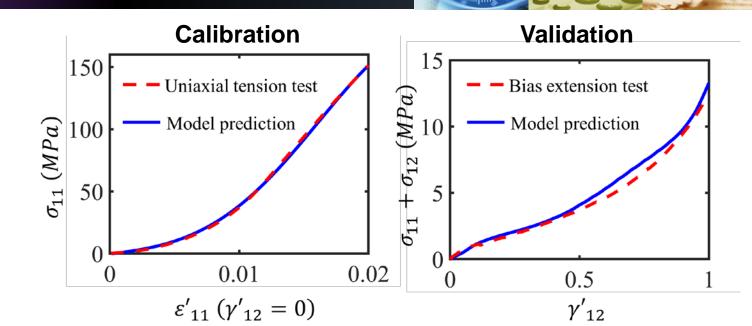
- *x*: $-0.02 \le \varepsilon'_{11}, \varepsilon'_{22} \le 0.02$
- $\boldsymbol{\theta}$: $20 \leq E_1 \leq 60 \; GPa$

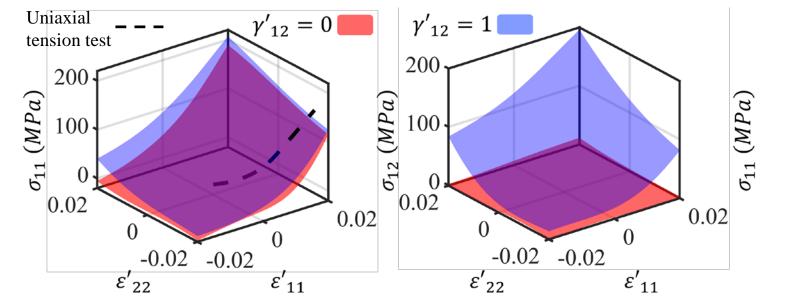


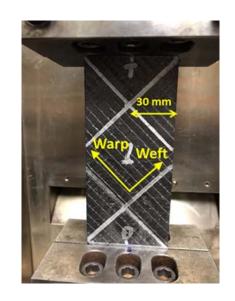
Setup: Uniaxial Tension

Posterior of Stress Predictions

- **Calibration** is done via the uniaxial tension test.
- Validation is done via the bias extension test.
- Posterior of stresses are readily available at any strain state.



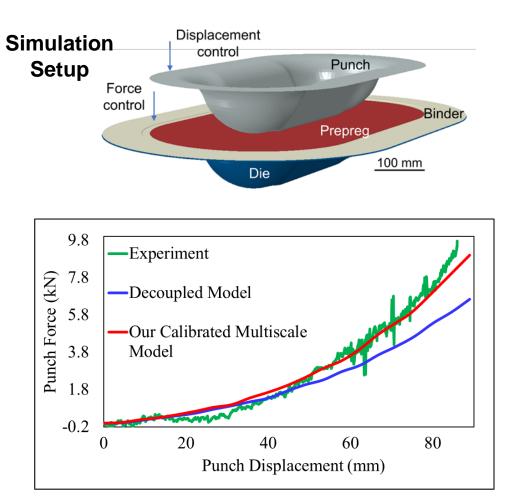


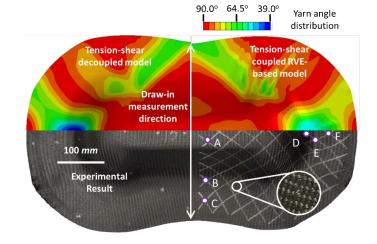


Setup: Bias Extension

Final Validation: Macroscale Simulation

- The calibrated and validated emulator is used as the **constitutive law** in the macroscale simulations.
- Our predictions of **punch force** and **yarn angle** are compared against experiments.





Yarn angle comparison

Comparison	Α	В	С	D	Е	F
Multiscale model	86º	88º	73º	54º	57°	67°
Decoupled model	89º	89º	71º	40°	45°	65°
Experiment	80°	88º	71º	49°	56°	66°

Closure

• Material systems are complex engineered

Stochasticity plays a critical role in materials behavior prediction

> Linear & nonlinear dimensionality reduction can provide significant speed-ups.

highly coupled in materials design. **Microstructure** Representation

Multiscale Evaluation

Bayesian Validation & Calibration

Big data and lack of data co-exist in materials informatics.

Design and manufacturability are

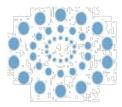
Various sources of spatiotemporally varying uncertainty sources should be considered in multiscale materials.

Model UQ in Materials – Challenges (SAMSI NUMS Working Group)

UQ of Microstructures

- How do we properly characterize location dependent and scale-coupled heterogamous material micro-/meso-/nano-structure?
- When is (microstructural) uncertainty important to consider in multiscale systems?
- Dimension reduction and active subspace for vector valued, time-dependent, and spacedependent Qol
- UQ when inferring 3D microstructures with 2D images
- Physics-aware machine learning of processing-structure relations
- Emulators in Multiscale Modeling
 - Time-dependent and path dependent surrogates
 - Surrogates that maintain conservation properties
 - Dimension reduction and active subspace of surrogate inputs and outputs
 - Data fusion from multi-fidelity simulations
- Multiscale Model Calibration and UQ
 - Spatially varying calibration parameters in the presence of model bias
 - Form of discrepancy function
 - Can "calibrated" material parameters be extrapolative ?
 - How to pass model UQ from lower scale to higher scale?
 - Strategies for improving model "identifiability"
 - Design of multi-scale data collection
 - Concurrent design of experiments and computer simulations

Acknowledgment



INTERNATIONAL INSTITUTE FOR NANOTECHNOLOGY Northwestern University

Related Publications

Bostanabad, R., Zhang, Y., Li, X., Kearney, T., Brinson, L. C., Apley, D., Wing K., and Chen, W., "<u>Computational Microstructure Characterization and Reconstruction: Review of the State-of-the-art</u> <u>Techniques</u>", Progress in Materials Science, 95, June 2018.

Bostanabad, R., Liang, B., Gao, J., Liu, W-K., Cao, J., Zeng, D., Su, X., Xu, H., Li, Y., and Chen, W. (2018). "<u>Uncertainty Quantification in Multiscale Simulation of Woven Fiber</u> <u>Composites</u>". Computational Methods in Applied Mechanics and Engineering, 338(8), 2018.

Chen, Z., Huang, T., Shao, Y., Li, Yang, Xu, H., Avery, K., Zeng, D., Chen, W., and X. Su, "<u>Multiscale Finite Element Modeling of Sheet Molding Compound (SMC) Composite Structure based on Stochastic Mesostructure Reconstruction</u>", Composite Structures, 188, 25–38, 2018.

Zhang, W., Bostanabad, R., Liang, B., Su, X., Zeng, D., Bessa, M., Wang, Y., Chen, W., and Cao, J., "A Numerical Bayesian-Calibrated Characterization Method for Multiscale Prepreg Preforming Simulations with Tension-Shear Coupling", Composite Science and Technology, in press.

Bessaa, M.A., Bostanabad, R., Liu, Z., Apley, D.W., Brinson, C., Chen, W., and Liu, W-K, "<u>A</u> <u>framework for data-driven analysis of materials under uncertainty: Countering the curse of</u> <u>dimensionality</u>", Computer Methods in Applied Mechanics and Engineering, 320, 633-667, 2017.