Instantaneous Homogenized Response

- Power-law behavior for the grains:

$$
\phi_{(k)}(\tau)=\frac{\dot{\gamma}_{0}\left(\tau_{0}\right)_{(k)}}{n+1}\left|\frac{\tau}{\left(\tau_{0}\right)_{(k)}}\right|^{n+1}
$$

- Statistically isotropic distribution of the grains both in space and orientation implies:

$$
\widetilde{u}(\overline{\boldsymbol{\sigma}})=\frac{\dot{\gamma}_{0} \widetilde{\sigma}_{0}}{n+1}\left(\frac{\bar{\sigma}_{e}}{\widetilde{\sigma}_{0}}\right)^{n+1}
$$

where $\bar{\sigma}_{e}$ is the von Mises equivalent stress, and $\widetilde{\sigma}_{0}$ is the effective flow stress (depends on $\operatorname{det} \overline{\boldsymbol{\sigma}}$).

Ice Polycrystal

Effective Flow Stress

$$
n=3 \quad \begin{gathered}
\text { Grain Anisotropy } \\
M=\tau_{B} / \tau_{A}=\tau_{C} / \tau_{A}
\end{gathered}
$$

-FFT - Full numerical simulation
Lebensohn, Liu \& PC (2004) AM

Ice Polycrystal

Standard Deviation of Equivalent Strain-Rate

Standard Deviation of Equivalent Stress

Grain Anisotropy

$$
M=\tau_{B} / \tau_{A}=\tau_{C} / \tau_{A}
$$

Ice Polycrystal

DIC: Map of Equivalent Strain

Grennerat et al. (2012) Acta Mat.

High-Anisotropy HCP Polycrystals

Grain Average Strain-Rate

Ice

High-Anisotropy HCP Polycrystals

Grain SD Strain-Rate Fluctuations

Ice

	1		
0.2	0.4	0.6	0.8

$$
M=1
$$

$$
M=60
$$

$$
n=3
$$

APPLICATION: FIBERREINFORCED COMPOSITES

Idiart, Moulinec, Ponte C, Suquet (2006) JMPS

Fiber-reinforced composites

- Distribution of fibers in the plane is random and isotropic
- Plane strain conditions
- Incompressible, power-law phases:

$$
w^{(r)}(\boldsymbol{D})=\frac{\sigma_{0}^{(r)}}{1+m} D_{e}^{1+m}
$$

- In-plane effective behavior:

$$
\widetilde{W}(\overline{\boldsymbol{D}})=\frac{\widetilde{\sigma}_{0}}{1+m} \bar{D}_{e}^{1+m}
$$

effective flow stress

$$
\widetilde{\sigma}_{0}\left(m, c^{(r)}, \sigma_{0}^{(r)}\right)
$$

Fiber-reinforced composites

- Fast Fourier Transform (FFT) simulations

- 490 composite cylinders of three different sizes
- ensemble average over 20 configurations in order to obtain statistical homogeneity and isotropy
- discretization: 1024×1024 pixels
- Second-order estimates

Mean concentration of fibers ≈ 0.21

- make use of the Hashin-Shtrikman linear estimates (Willis 1978, Ponte Castañeda \& Willis 1995)
- require the solution of three nonlinear equations

