Stochastic Modeling of Damage Localization in Quasibrittle Materials

Jia-Liang Le

Department of Civil, Environmental, and Geo- Engineering University of Minnesota

Background — Strain Localization in Quasibrittle Materials

Quasibrittle (brittle heterogenous) materials exhibit a softening stress-strain behavior, which leads to strain localization. σ

composites

ceramics

concrete

Localization instability:

 non-uniform deformation incipient in a band with continuing equilibrium and homogenous deformation outside the band.

Eigenvalue analysis of acoustic tensor (e.g.
Rudnicki and Rice 1976 — finite strain
plasticity, Jirásek 2007 — damage softening)

Background — Localization Limiters

Strain localization leads to the issue of mesh objectivity in continuum FE modeling — loss of ellipticity of the governing equation.

Existing numerical techniques to treat strain localization — localization limiters

- I. Crack band model (Bažant and Oh 1983)
- adjust the post-peak of stress-strain curve to preserve the fracture energy (link smeared damage to cohesive crack)
- II. Nonlocal continuum
- introduce non-locality to the constitutive relationship

$$f(\sigma, \bar{\kappa}) = 0$$

- 1) Integral type models (Bažant and Pijaudier-Cabot 1987)
- 2) Gradient type models (e.g. Aifantis 1984, Bažant 1984, Mühlhaus and Aifantis 1991, Peerlings et al. 1996)

Stochastic Analysis: A Simple Example

Stochastic analysis:

Probabilistic Crack Band Model

Regularization of fracture energy of localized crack — Conventional crack band model (Bažant and Oh 1983)

Regularization of Fracture Energy

Transition from damage initiation to damage localization:

distributed damage

$$\Gamma = h_e \gamma_0$$

localized damage

$$h_e \gamma = G_f$$

 Γ is proportional to the element size, but G_f is a material constant. Therefore, it is necessary to model the transition between damage initiation and localization.