
✏̇

D

D

Grain size: 

Specimen size range:

Calculation of average 
stress:

b = 10 µm

da = 10 µm

Simulation of Failure of AlN Specimens

estimation method [51], and 3) the standard Gaussian field generated on the facets is converted to
the Gauss-Weibull random field h(x) by using the isoprobabilistic transformation. Fig. 4 presents a
typical realization of the random field h(x).

The aforementioned computational model is numerically implemented with the implicit Newmark
method [52, 53]. The equation of motion is solved incrementally in an implicit scheme, which is un-
conditionally stable. The mass matrix is constructed by using the full inertia tensor of Voronoi bodies.
The moment of inertia of these polyhedral bodies are calculated by dividing them into tetrahedra
[54]. Though a stable numerical solution scheme is chosen, a small time step is needed to capture
the dynamic failure of the facet. For each simulation case, several trial simulations are performed to
determine a desirable time step, which yields a consistent result.

4. Simulations of Dynamic Tensile Failure of AlN Specimens

The aforementioned stochastic computational model is applied to simulate the dynamic tensile failure
of aluminum nitride (AlN) specimens. In the simulations, we consider square specimens of di↵erent
in-plane sizes D = L = 50, 100, 200, 400, 800 µm (Fig. 1a), whereas the out-of-plane thickness
is set constant b = 10 µm. The average in-plane grain size lmin of AlN material is taken as 6 µm
[12]. Each specimen is subject to a constant strain-rate loading, which is applied by imposing a non-
uniform velocity field described as vx1 = x1✏̇ (x1 denotes the horizontal position of each nucleus). In
order to investigate the rate-dependent behavior, we consider a wide range of applied strain rates, i.e.
✏̇ = 1, 1000, 2500, 5000, 7500, 104, 3⇥ 104, 5⇥ 104, 105, 2⇥ 105/s.

We choose the following mesoscale material parameters for AlN: E0 = 530GPa, ↵ = 0.17, f̄t =
150MPa, f̄s = 3f̄t, Ḡt = 2Jm�2, Ḡs = 16Ḡt, µ = 0.2, and ⇣ = 0.95. The elastic parameters (E0 and
↵) are determined to match the macroscopic elastic response of AlN reported in [12]. The inelastic
mesoscale material parameters are chosen so that the model predicts the quasi-static tensile strength
of a 50 µm square AlN specimens being about 120 MPa, which is similar to the published results
[12]. It is admitted that mixed-mode loading scenarios will be needed to better calibrate the coupling
between tensile and shear damage. However, such a detailed calibration procedure is not necessary for
the present purpose. For the random field h(x), we consider that it has an autocorrelation length la of
24µm, and the underlying Gauss-Weibull distribution function has a mean value of one, a coe�cient
of variation of 20%, a Weibull modulus of 30 and a grafting probability of 5⇥10�4.

For each specimen size and strain rate, about 70 realizations of di↵erent random fields h(x) and
mesostructures are used to determine the mean and variance of the peak load capacity of the specimen.
As mentioned earlier, the peak load capacity of the specimen is expressed in terms of the nominal
strength, which in this case is equal to the maximum value of the nominal stress �a along x1�direction
(Fig. 1a). For the present discrete system, we first calculate the fabric stress tensor of a single Voronoi
body k as [55, 56]

�̄k =
1

Vk

nkX

p=1

tp ⌦ (xcp � xk) (23)

where Vk = volume of the kth body, nk = number of facets of the body, tp = traction vector on the pth
facet expressed in the global coordinate system, xcp = position vector of the centroid of the pth facet,
and xk = position vector of the nucleus of the body. The nominal stress �a can then be calculated as
a volume average of the fabric stress components in the x1�direction, i.e.:

�a =
1

V

NX

k=1

Vk�̄
k
11 (24)

where V = volume of the specimen, and N = number of Voronoi bodies in the specimen.
Based on the simulations, we obtain a set of random responses of the relationship between the
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