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study, the effect of the localization damage of the surround-
ing Gauss points on the weakest link model is described
through an empirical function

ne = 1+
✓

he

h0
�1

◆
exp

✓
� kw

k0w

◆
(10)

It should be emphasized here that the strain localiza-
tion mechanism has different effects on the probability dis-
tributions of energy dissipation density and material tensile
strength of each Gauss point: the tensile strength is dic-
tated by the minimum tensile strength of the material element
of a crack band width whereas the energy dissipation den-
sity is directly related to the fracture energy of the material.
This leads to different treatments of the mesh dependence of
the cdfs of tensile strength and energy dissipation density.
For the present probabilistic analysis the tensile strength and
fracture energy are treated as two uncorrelated random vari-
ables.

3 Numerical Examples
The proposed PCBM is applied to simulate the proba-

bility distributions of the nominal strength of three concrete
specimens under different loading configurations (Fig. 6).
The nominal stresses for these three specimens are defined
as the maximum principal stress based on the elastic analy-
sis, which can be expressed as

sN = P/bD for uniaxial tension (11)
sN = 6M/bD

2 for pure bending (12)
sN = 3PL/2bD

2 for three-point bending (13)

where P,M = the applied load and moment, D = specimen
depth, L = specimen length, and b = width of the specimen
in the transverse direction. The maximum nominal stress,
sN,max, corresponds to the nominal stress computed for the
maximum load (Pmax,Mmax) that the specimen can sustain.
For comparison purpose, two other models are also used to
perform these simulations, which include 1) the crack band
model (Eq. 7) without adjusting the probability distribution
of tensile strength (i.e. ne = 1 for Eq. 9), which is denoted

Fig. 6. Loading configurations of three specimens: a)
uniaxial tension, b) pure bending, and c) three-point
bending.

by CBM, and 2) the crack band model (Eq. 7) with consid-
ering the weakest link model of tensile strength regardless of
the localization level (i.e. ne = he/h0 for Eq. 9), which is
denoted by WLM.

3.1 Constitutive model
In this analysis we consider a simple isotropic damage

model even though the proposed PCBM can also be incorpo-
rated into other more sophisticated constitutive models. The
present constitutive relationship can be written as

s = (1�w)D : e (14)

where D=elastic stiffness tensor and w= damage parameter.
The parameter w describes the damage level of the material
point. Here w is expressed as a function of the equivalent
strain, ē, defined by [29]
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where e1�3 are principal strain values. The damage parame-
ter is then calculated by assuming a linear softening behav-
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ēm
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where ēm is the maximum value of ē that has ever been at-
tained during the past loading history. To prevent a snap-
back stress-strain behavior, the fracturing strain should not
be smaller than the strain at the elastic limit, i.e. g  f

2
t
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Then, equation 6 turns into
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The results of calculation with the updated WLM scaling are shown in 2b. One can see no dependence on
element size as requested.

The crack band model is still working, so the energy dissipation is also independent on discretization as can
be seen in Fig. 3.

2 2D case

Three loading scenarios were considered: tension, pure bending and three-point-bending. Fig. ??a shows mod-
eled configuration. The results will be presented using nominal stress �N, which is theoretical maximum stress
reached in the model assuming linear behavior. The domain is alway discretized into rectangular elements of
depth d and width h. Ste crack band width, hb, used in Eq. (1) is now assumed to be measured as length of
projection of the element into the direction of maximum principle strain. Fig. 4 show mesh with one selected
element (dark gray) and its neighbors (in gray). Both materials were modeled using isotropic damage model
with linear softening; equivalent strain was calculated according to Mazar

"eq =
IIIX

i=I

h"ii2 (11)

Three types of models are used. The NO scaling model, that uses for every element the same distribution
X irrespectively of its size. This model systematically predicts incorrect response, with increasing element size
the strength of the model increases.

Second model type is the WLM scaling model, that adjust the distribution according to element number
of equivalent RVEs in the element, Neq = hb/lRVE. The scaling uses crack band width, hb, to account for
orientation of the element within the stress field. However, horizontal maximum principal stress prevails in
the damaging elements and therefore hb is close to h. The adjusted model distribution is XNeq is calculated
according to Eq. (7). Though this model type worked perfectly for 1D case, it provides lower strength for larger
elements in two dimensions. Reason for this behavior the incorrect assumption of Neq along the crack paths -
in neighbor elements.

The correct behavior is achieved by the third model that adjusts also theNeq during the calculation depending
on damage in the neighbor elements. Number of equivalent RVEs in Eq. (7) in every gauss point is dependent
on damage level in surrounding elements. Variable providing ratio between already dissipated energy and total
fracture energy, g, is calculated
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G(!)
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E!"f"
2
0

2 ((1 � !)"f + !"0)

0.5E"0"f
=

!"0
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Effective element width

Numerical Examples 
— Probabilistic Crack Band  Model
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Conclusions
1. Stochastic FE simulation of quasibrittle fracture requires special 

attention on how to numerically treat the strain localization 
phenomenon in a smeared continuum model.

2. Two important aspects to consider: 1) regularization of fracture 
energy and 2) mesh-dependent strength distribution —
randomness in location of localization band.

3. The proposed probabilistic crack band model can effectively 
mitigate the mesh dependence of stochastic FE simulations, 
and can be potentially combined with fine-scale DEM model to 
form a multiscale analysis framework.



Outlook
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1. Extension of model to dynamic fracture — rate dependence on 
strength distribution function. 

2. Stochastic simulations by directly using the random fields of 
material properties — mixture of different length scales: fracture 
length scale, auto-correlation lengths of different random fields.
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