

Stochastic non-local lattice particle method for voxel level uncertainty quantification and material failure analysis

Yongming Liu*1, Yi Gao1, Haoyang Wei1, Hailong Chen2, Yang Jiao1

¹School for Engineering of Matter, Transport & Energy Arizona State University, Tempe, AZ, 85287

²Mechanical Engineering Department University of Kentucky, Lexington, KY 40506

Outline

- Introduction and background
- Extreme dimension probabilistic computational material analysis
 - Pixel (Voxel) level deterministic mechanics model
 - Pixel (Voxel) level uncertainty quantification
 - Pixel (Voxel) level probabilistic solver
- Demonstration examples for Adjoint Lattice Particle Method (ALPM)
- Conclusions and future challenges

Introduction – extreme dimension in probabilistic computational materials

- High fidelity model is preferred and sometime required
- The highest resolution is determined by image pixels/voxels
- Pixel/voxel level model for both mechanic model and UQ
- Issue: extreme dimension, especially for probabilistic analysis

Pixel/Voxel level computational mechanics model - nonlocal LPM 1

H. Chen, and Y. Liu. International Journal of Solids and Structures.

Pixel/Voxel level computational mechanics model - nonlocal LPM 2

The potential of a particle in terms of the spring elongation:

The potential of a particle in terms of the strain components:

$$U_{particle} = \sum_{I=1}^{N_{cell}} U_{cell}^{I} = \sum_{I=1}^{N_{cell}} \left(\frac{1}{2} \sum_{J=1}^{N_{I}} k_{IJ} (\delta l_{IJ})^{2} + \frac{1}{2} \left(\sum_{J=1}^{N_{I}} T_{IJ} \delta l_{IJ} \right) \left(\sum_{J=1}^{N_{I}} \delta l_{IJ} \right) \right) \qquad U_{continuum} = \sum_{I=1}^{N_{cell}} \frac{1}{2} (l_{0}^{I})^{2} \left(\sum_{b=1}^{N_{I}} k_{Ib} n_{l}^{Ib} \varepsilon_{kl} n_{l}^{Ib} + \left(\sum_{b=1}^{N_{I}} T_{Ib} n_{l}^{Ib} \varepsilon_{kl} n_{l}^{Ib} \right) \left(\sum_{b=1}^{N_{I}} n_{k}^{Ib} \varepsilon_{kl} n_{l}^{Ib} \right) \right)$$

 N_{cell} number of unit cells N_I number of neighbors for unit cell I l_0^I half length of a original spring of unit cell I n_i^{Ib} the ith component of unit normal vector of unit cell I in the b direction ε_{ij} the strain matrix component

The potential is conservative, thus the material stiffness matrix can be obtained as :

$$U_{particle} = U_{continuum}$$
 $\Box = \sum C_{ijkl} = \frac{1}{V_1} \frac{\partial^2 U_{particle}}{\partial \varepsilon_{ij} \partial \varepsilon_{kl}}$

 V_1 the volume of unit cell for the first nearest neighbors

H. Chen, and Y. Liu. International Journal of Solids and Structures.

6

Pixel/Voxel level computational mechanics model - nonlocal LPM 3

Analytical solution for model parameters

7

Pixel/Voxel level computational mechanics model - nonlocal LPM 4

Solution algorithm - atomic finite element method (AFEM)

The total energy of the particle system is a function of the particle positions

$$E_{total}(\mathbf{x}) = U_{total}(\mathbf{x}) - \sum_{I=1}^{N} \bar{\mathbf{f}}_{ext}^{I} \cdot \mathbf{x}_{I} \qquad \text{with} \qquad U_{total} = \sum U_{particle}(\mathbf{x})$$

Taylor expansion of the total energy gives

$$E_{total}(\mathbf{x}) \approx E_{total}(\mathbf{x}^{(0)}) + \frac{\partial E_{total}}{\partial \mathbf{x}} \bigg|_{\mathbf{x}=\mathbf{x}^{(0)}} \cdot (\mathbf{x} - \mathbf{x}^{(0)}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^{(0)})^T \cdot \frac{\partial^2 E_{total}}{\partial \mathbf{x} \partial \mathbf{x}} \bigg|_{\mathbf{x}=\mathbf{x}^{(0)}} \cdot (\mathbf{x} - \mathbf{x}^{(0)})$$

The state of minimal energy:

The Governing Equation:

 $\mathbf{K} \boldsymbol{u} = \boldsymbol{Q}$

$$\frac{\partial E_{total}(\mathbf{x})}{\partial \mathbf{x}} = 0$$

$$\mathbf{K} = \frac{\partial^2 E_{total}(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}} \bigg|_{\mathbf{x} = \mathbf{x}^{(0)}} = \frac{\partial^2 U_{total}(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}} \bigg|_{\mathbf{x} = \mathbf{x}^{(0)}} \qquad \mathbf{Q} = -\frac{\partial E_{total}(\mathbf{x})}{\partial \mathbf{x}} \bigg|_{\mathbf{x} = \mathbf{x}^{(0)}} = \bar{\mathbf{f}}_{ext} - \frac{\partial U_{total}(\mathbf{x})}{\partial \mathbf{x}} \bigg|_{\mathbf{x} = \mathbf{x}^{(0)}}$$

	$\partial^2 U_{total}$	$\partial^2 U_{total}$	$1 \frac{\partial^2 U_{total}}{\partial}$	$1 \partial^2 U_{total}$		$\frac{1}{\partial^2 U_{total}}$	$1 \partial^2 U_{total}$
	$\partial x_I \partial x_I$	$\partial x_I \partial y_I$	$2 \partial x_I \partial x_1$	$2 \partial x_I \partial y_1$		$2 \partial x_I \partial x_{18}$	$2 \partial x_I \partial y_{18}$
	$\partial^2 U_{total}$	$\partial^2 \hat{U}_{total}$	$\frac{1}{2} \partial^2 U_{total}$	$\frac{1}{\partial^2 U_{total}}$		$\frac{1}{\partial^2 U_{total}}$	$\frac{1}{\partial^2 U_{total}}$
	$\partial y_I \partial x_I$	$\partial y_I \partial y_I$	$2 \partial y_I \partial x_1$	$2 \partial y_I \partial y_1$		$2 \partial y_I \partial x_{18}$	$2 \partial y_I \partial y_{18}$
	$\frac{1}{\partial^2 U_{total}}$	$\frac{1}{\partial^2 U_{total}}$	0	0		0	0
	$2 \partial x_I \partial x_1$	$2 \partial x_I \partial y_1$	0	0		Ū.	0
$\mathbf{K}_{I} =$	$\frac{1}{\partial^2 U_{total}}$	$\frac{1}{\partial^2 U_{total}}$	0	0			0
	$2 \partial y_I \partial x_1$	$2 \partial y_I \partial y_1$		Ū.			
					٠.		
	$\frac{1}{\partial^2 U_{total}}$	$\frac{1}{\partial^2 U_{total}}$	0			0	0
	$2 \partial x_I \partial x_{18}$	$2 \partial x_I \partial x_{18}$	Ŭ			Ŭ	0
	$\frac{1}{\partial^2 U_{total}}$	$\frac{1}{2} \partial^2 U_{total}$	0	0		0	0
	$2 \partial y_I \partial x_{18}$	$2 \partial y_I \partial y_{18}$	5	0		5	0

Input value

-Hexagonal packing

x 10⁻⁴

FEM

Displacement - Ux (m)

9.688E-05

7.532E-05

5.376E-05

3.221E-05

1.065E-05

-1.091E-05

-3.247E-05

-5.403E-05

7.558E-05

9.714E-05

ARIZONA STATE UNIVERSITY

Pixel/Voxel level computational mechanics model - demonstration

1. Deformation (Bi-continuous case)

2. Fracture (Particulate reinforcement)

Pixel/Voxel level uncertainty quantification – UQ from two sources

