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Case (11) Case (12) Case (13) Case (14) Case (15) Case (16) Case (17)

Threshold /m 2.22 r 10lv 2.21 r 10lv 2.20 r 10lv 2.19 r 10lv 2.18 r 10lv 2.17 r 10lv 2.15 r 10lv
^V_{! 0.24284 0.13275 0.06314 0.02566 0.008810 0.002674 1.4981 r 10lv
*_{! 10t 10t 10t 10t 10v 10v 10v

^V_|e}{ 0.24570 0.13466 0.064086 0.026293 0.0092497 0.0027785 1.5416 r 10lv
*_|e}{ 11 12 12 12 13 12 13

Error 1.1640% 1.4184% 1.4761% 2.4075% 4.9909% 3.9080% 2.9037%

Table 6.  Relative errors varying with failure probabilities

Pixel/Voxel level probabilistic solver –
validation example (weakly nonlinear) 3
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Cluster function parameter

~ 	 0 ~ 	 0.5 ~ 	 1

Pixel/Voxel level probabilistic solver – demo 
example with different clustering 1
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Pixel/Voxel level probabilistic solver – demo 
example with different clustering 2

Threshold Dimension

Number of 

function 

evaluations

^x
Microstructure#1α 	 0 1.13 r 10l� 11759 14 7.4362 r 10lv
Microstructure#2α 	 0.5 1.13 r 10l� 11759 12 0.1018
Microstructure#3α 	 1 1.13 r 10l� 11759 14 3.5417 r 10lv

Table 7. Probabilistic failure analysis results
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Pixel/Voxel level probabilistic solver – demo 
example with nonstationary microstructure 1

Depth increases from surface

Steel from pipe 45

Steel from pipe 47

 Need a unified microstructure representation and probabilistic strength estimation
 Inference of original manufacturing process for maintenance optimization 
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The designed limit state function,P����� D, R 	 M� 1 1.16637 r 10l� S 0 

 Parameter type value Mean C.O.V 

+1 Phase#1(red) Normal - 180GPa 0.02 

+2 Phase#2(blue) Normal - 220GPa 0.02 

Loads VW  Normal - −2 × 106* 0.02 

Possion’s  ratio s Deterministic 0.3 - - 

 

Table 1.Uncertainties of parameters

Bi-phase materials
 16491 material particles

Pixel/Voxel level probabilistic solver – demo 
example with nonstationary microstructure 2
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Dimension
Number of function 

evaluations
^x

ALPM 16611 13 0.3897

Table 6. Probabilistic failure analysis results

Pixel/Voxel level probabilistic solver – demo 
example with nonstationary microstructure 3

* Ongoing work for demo only and values do not 
represent true failure probability
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Conclusions and future work - 1
• Adjoint Lattice Particle Method (ALPM) is proposed as a probabilistic

computational material tool independent of dimensionality
• Similar concept works for classical FEM as well, Ku=Q

 Go beyond the linearity – current formulation is for linear or weakly nonlinear
problem

 FORM-based MPP search is very valuable for other algorithms, such as SORM
or importance sampling
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Conclusions and future work - 2

 Surrogate and/or dimension reduction for extreme dimension problem
 Physics-based learning – FEA-Net: extreme dimension handled by CNN type of

network topology; significant reduction of training samples by physics constraints

� ⋅ � 	 V
�⨂� 	 �

FEA solver

Convolution
Analogy for network 
topology and FEA 
solution – FEA-Net

Fully Convolutional Network

Loading location

Displacement-X

Displacement-Y

Yao, H., Ren, Y., & Liu, Y. (2019). FEA-Net: A Deep Convolutional Neural Network With Physics Prior For Efficient Data Driven PDE 

Learning. In AIAA Scitech 2019 Forum (p. 0680).
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