
The Uncertainty Quantification Technical Thrust Area (UQ-TTA) of the United States Association for

Computational Mechanics (USACM) and the National Science Foundation (NSF) sponsored the Thematic

Conference on Uncertainty Quantification in Computational Solid and Structural Materials Modeling. The

conference was held January 17-18, 2019 on the campus of Johns Hopkins University in Baltimore,

Maryland.  

 

GOAL: Bring together prominent scholars in solid and structural mechanics, materials science, and

applied mathematics with a shared interest in uncertainty quantification and computational material

modeling to exhibit the state-of-the-art, collectively identify existing and future challenges, and promote

promising new ideas in the field.  

 

FOCUS: Understanding and quantifying uncertainties in material structure and behavior and

propagating these uncertainties through computational material models. This theme encapsulated

uncertainty in material performance at and across all length-scales (from atomistic to structural scale)

with interest in performance across diverse structural materials ranging from concrete to metals,

composites, ceramics, glasses and many others. Emphasis was placed on bringing together experts in

UQ with experts in mechanics/materials who recognize the need for UQ and the challenges associated

with its implementation. 

 

THEMES:  

Stochastic modeling of materials                                     Design and optimization for materials  

Data-driven modeling and machine learning               Multiscale material modeling 

 

SESSION DETAILS: Each session consisted of three or four 25-minute technical talks plus a 20-minute

discussion period. The intention of this report is to briefly review the technical presentations, highlight

major research themes/areas that emerged from the discussion, and shed light on future directions in

the field. 

 

PEOPLE: 26 invited speakers, 23 student posters, and 85 overall participants. 

 

MORE INFO: Further details and links to several presentations can be found on the conference webpage:

http://uq-materials2019.usacm.org. 
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Introduction
The performance of structural materials is strongly
influenced by uncertainties associated with compo-
sition, constituent properties, and defects. This is
especially true as materials approach failure and un-
dergo large inelastic deformations, fracture, and fa-
tigue. Computational modeling of these materials
is further complicated by uncertainties in material
model-form (e.g. incomplete physics), lack of data
to quantify material structure and/or property dis-
tributions, and computational cost of uncertainty
analyses among other challenges.

The USACM Thematic Conference on Uncer-
tainty Quantification in Computational Solid and
Structural Materials Modeling brought together a
group of multidisciplinary experts with shared in-
terest in the problem of uncertainty quantification
(UQ) in materials modeling, and/or various aspects
of it. As such, the conference was composed of lead-
ers from academia, government/national labs, and
industry with expertise varying from applied math-
ematics to mechanical engineering, civil engineering,
materials science, data science, machine learning,
and computational science. The conference featured
a total of 26 invited speakers, who were carefully
selected to fit the specific themes of the conference.

The sessions of the conference were dedidated to
four primary themes:

1. Stochastic modeling of materials

2. Data-driven modeling and machine learning

3. Design and optimization for materials

4. Multiscale material modeling

with, of course, the emphasis being placed on uncer-
tainty quantification within each of these themes.

The conference was scheduled in seven sessions
with two sessions dedicated to stochastic model-
ing of materials (one related to methodology and
one related to material failure), one session each
of data-driven modeling/machine learning, and de-
sign/optimization, and three sessions dedicated to
multiscale material modeling (one each focusing on
lower-scale and upper-scale modeling and one fo-
cused on bridging lengthscales). Each presenter was
given 25 minutes to share their research related to
the session theme and questions were held until the
end of each session. At the end of the session, the
floor was then opened to all speakers for a discus-
sion, moderated by the session chair, on the primary
research challenges related to the session theme, fu-
ture directions for the field, and any specific ques-
tions related to the presentations. To foster this con-
versation, each speaker was asked to conclude their
presentation by identifying a few future research di-
rections related to the topic of the session.

The intention of this report is to provide a de-
tailed review of the conference, the research pre-
sented, the discussions that ensued, and the pri-
mary takeaways related to the future of research
in uncertainty quantification for materials modeling.
The report is structured according to the conference
program, with a section dedicated to each session.
Within each section, a short review of each presenta-
tion is made. This is followed by a brief summary of
the discussion for that session, and some insights are
expressed related to future research in this area. Fol-
lowing the review of each session, we provide some
global insights gained related to the main takeaways
from the conference, emerging themes, and needs for
future research.
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Session 1: Stochastic modeling of
materials: Methodology
Session Chair: Vissarion Papadopoulos, Na-
tional Technical University of Athens

Presenters:

1. Johann Guilleminot, Duke University, “A
Tour of Stochastic Modeling for Materials Science
and Multiscale Analysis.” (Presented remotely)

2. George Deodatis, Columbia University, “Re-
flections on the Use of Monte Carlo Simulation
in Stochastic Mechanics.” (Absent due to illness)

3. Martin Ostoja-Starzewski, University of Illi-
nois – Urbana Champaign, “Tensor Random
Fields in Continuum Mechanics.”

4. Michael Ortiz, California Institute of Technol-
ogy, “Optimal Uncertainty Quantification with
Focus on Material Uncertainty.”

Overview:
The objectives of this session were to discuss ad-
vances in methodologies for stochastic modeling of
materials. This includes methodology related to sim-
ulation of random fields (scalar, vector, and tensor-
valued and often on complex geometries) as applied
to generating microstructure and parametric ma-
terial properties such as those defining a constitu-
tive model. Particular emphasis was placed on en-
suring these synthetically generated quantitites sat-
isfy mathematical constraints related to the solution
of stochastic partial differential equations (SPDEs),
physical constraints related to continuum balance
laws and constitutive models, as well as constraints
related to identifiability (i.e. from small data) and
stochastic dimension.

Further objectives related to presenting method-
ology for uncertainty propagation in materials mod-
eling. This include the propagation of parametric
uncertainty through models of materials systems at
various scales (and across scales) as well as the prop-
agation of uncertain information in order to establish
bounds on probabilistic quantities of interest (e.g. for
design purposes).

Talks in this session presented an overview of
some recent advances and challenges in stochastic
modeling of materials, and rigorous UQ account-
ing for uncertainty in material parameters. The
talks touched upon issues such as modeling non-
Gaussian quantities on complex geometries, mod-
eling tensor-valued coefficients in stochastic partial

differential equations for materials systems, incorpo-
rating physical consistency in the generated random
fields, and randomness introduced by lack of sepa-
ration of scales. The talks also discussed propaga-
tion of uncertainties in materials in order to establish
optimal upper bounds on the probability of failure
using estimated function means and diameters.

Wide-ranging materials applications were given
and included quantification of tensor elastic quanti-
ties from multiscale simulations (micro-to-meso-to-
macro), quantifying non-Gaussian tensor quantities
from molecular dynamics simulations, crack propa-
gation using phase field modeling, multiscale struc-
tural modeling, human artery modeling, data-driven
modeling of hyperelastic laminated composites, and
ballistic impact in ductile metal plates.

Review of Presentations:

Figure 1: Estimated covariance functions and real-
izations of non-Gaussian random fields on an artery
wall.

Presentation 1: Johann Guilleminot “A Tour of
Stochastic Modeling for Materials Science and Mul-
tiscale Analysis.”

Problem setting/ motivation: Uncertainty quantifi-
cation in computational mechanics requires develop-
ment of approaches for modeling, simulation, iden-
tification, and validation of stochastic constitutive
models, on complex geometries, with spatially vary-
ing coefficients in stochastic partial differential equa-
tions (SPDEs), and non-Gaussian models for proba-
bilistic parameters.

Background theory: Models are admissible if they
satisfy all mathematical requirements of the prob-
lem, imposed by the relevant mechanics principles.
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Within a class of admissible models, it is necessary to
choose a model while accounting for physical consis-
tency, subject to identification constraints. After a
model is chosen, it is also necessary to validate it for
the intended purpose. Random material parameters
which need to be generated could be non-Gaussian,
vector- or tensor-valued, statistically dependent, in
addition to being spatially dependent.

Methodology: To generate non-Gaussian random
fields, one approach is to use a translation process.
The Gaussian germ for the translation process is
obtained as the solution of a spatial SPDE solved
by a Galerkin numerical method. Since the preci-
sion matrix for Gaussian fields generated in such a
way is full, computing its Cholesky decomposition
during calculations is expensive. To overcome this
problem, a suitable approximation is made of the
Gaussian fields by a Gaussian random Markov field,
which has a sparse precision matrix. The method-
ology for sampling these Gaussian fields on mani-
folds was extended to sample on complex geometries.
The methodology also allows generation of locally
anisotropic fields. The non-Gaussian fields obtained
by translation also inherit these properties.

Examples & results: Several examples were pre-
sented showing methodology for use in multiscale
simulations. One example dealt with probabilistic
multiscale modeling of a nanocomposite. Another
example concerned probabilistic multiscale model-
ing of crack propagation. The objective was to
model crack propagation with a mesoscale phase
field approach. A third example considered coupling
structural analysis with a multiscale solver to enable
multiscale-informed structural analysis. Polynomial
chaos expansion (PCE) based nonlinear upscaling
was performed to achieve consistency in propagat-
ing the uncertainty.

Another example concerned modeling of human
arteries, with patient-specific geometries. Non-
Gaussian fields of elastic properties with anisotropy
and specific signatures were able to be generated
on complex geometries. Uncertainty in the random
fields was propagated through finite element simula-
tions which showed that there was large fluctuation
in the von Mises stress caused by fluctuations in the
elastic fields. The last example related to stochastic
modeling of a laminated composite and identification
of a hyperelastic constitutive model for the material.

Conclusions: Recent development of probabilis-
tic methodologies were presented for non-Gaussian

models for material properties, and multiscale prob-
abilistic modeling for materials. The feature was
that the methodologies presented used physics based
models satisfying all mathematical requirements.

Future Research Directions: Prof. Guilleminot high-
lighted some important challenges and future re-
search direction, such as:

• Methods to handle model uncertainties need to be
adopted. He suggested that a Bayesian framework
can be used for this.

• Small datasets introduce large uncertainty in iden-
tification of parameters.

• Factors such as age can change the properties
of the arterial walls. Is it possible to perform
Bayesian updating of the random fields to account
for these changes?

Presentation 2: George Deodatis “Reflections
on the Use of Monte Carlo Simulation in Stochastic
Mechanics.”

George Deodatis was absent due to illness, so the
presentation was not given.

Figure 2: Three length-scale in multi-scale model-
ing of materials: Microscale / Microstructure (top),
Mesoscale SVE (middle), Macroscale RVE (bottom).
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Presentation 3: Martin Ostoja-Starzewski
“Tensor Random Fields in Continuum Mechanics.”

Problem setting/ motivation: In order to represent
the random microstructure of materials in contin-
uum mechanics, it is necessary to generate random
fields with, for example, spatially homogeneous and
ergodic statistics. For tensor-type properties of ma-
terials, it is necessary to generate tensor random
fields (TRFs) with various anisotropies. TRFs are
also needed as inputs into stochastic partial differ-
ential equations (SPDEs), stochastic finite elements
(SFEs), etc.

Background theory: In continuum mechanics, it is
of particular interest to infer homogenized material
properties at a higher scale from random microstruc-
ture (i.e., tensor random fields). To do this, it is
essential to adopt the correct variational principles
and positive-definite properties. In the problem un-
der consideration, there are 3 scales (see Figure 2):
1. microscale (at the level of the microstructure);
2. mesoscale (statistical volume element or SVE);
and 3. macro scale (representative volume element
or RVE). But in general, there is lack of separation
of scales, so there may also be randomness in the
transition between scales.

A TRF is a mapping from the material space
to a vector space. As such, TRFs must satisfy
certain restrictions on: 1. dependencies between
quantities such as displacement, velocity, defor-
mation, rotation, stress, etc, dictated by contin-
uum balance laws; and 2) constitutive responses
such as conductivity, stiffness, etc, dictated by mi-
crophysics/micromechanics and positive-definiteness
for conservative and dissipative phenomena.

Methodology: Use is made of the Hill-Mandel condi-
tion, which states the equivalence of energetic and
mechanical definitions of Hooke’s law. The Hill-
Mandel condition leads to consistent upscaling from
lower to higher scales. Currently, as inputs to SPDEs
or SFEs, use is made of either TRFs of locally
isotropic properties, or TRFs with rather simplis-
tic or no spatial correlations. The approach to im-
prove on this practice was divided into two tasks: 1.
Use wide range of mathematical morphology models,
which might include local anisotropy, for real mate-
rials to go from microscale to mesoscale; 2. Develop
statistically isotropic TRFs with local anisotropy,
having the most general correlation functions. This
can then be generalized to statistical anisotropy and
inhomogeneity.

Examples & results: Representations of statistically
isotropic TRFs up to rank 4 were presented. Exam-
ples included formulations of in-plane conductivity
problems, anti-plane elasticity problems, and plane
stress problems. Especially, TRFs for the constitu-
tive tensor in elasticity were shown. With 29 func-
tions, one can cross-correlate and autocorrelate be-
tween all components of the 4th rank constitutive
tensor in elasticity.

Conclusions: The primary conclusions emphasized
the need for TRFs at micro- and mesoscales. The
use of the Hill-Mandel condition leads to consistent
definitions of these TRFs, which are functions of the
microstructure and the mesoscale.

Future Research Directions: Prof. Ostoja-Starzewski
identified two critical questions related to TRFs in
multiscale materials modeling:

• Can a unique mesoscale TRF be defined?

• How different is the solution for the mean field
from the solution of a stochastic boundary value
problem at the macroscale?

Addressing these two questions will provide critical
insights into stochastic multiscale modeling of mate-
rials.

Presentation 4: Michael Ortiz “Optimal Uncer-
tainty Quantification with Focus on Material Uncer-
tainty.”

Problem setting/ motivation: The overall picture is
that there is a system (i.e., a black box) that has to
be designed, which has random inputs and maybe
some unknown unknowns (i.e., unknown inputs), has
a response function f which might be unknown, and
has a set of outputs. Safe design of the system means
to ensure, with some confidence, that the value of
outputs are in some admissible set (i.e., probability
of failure of the system should be below the tolerance
for sure). This essentially means the upper bound
on the probability of failure must be established.

Background theory: Exact probability of failure can,
in theory, be obtained by integration. But practi-
cally this cannot be done because of several issues
– namely, the priors are never known exactly and
the response function of the black box system is un-
known. So, it is desired to estimate an upper bound
on the probability of failure (PoF) of the system and
use this upper bound but not the exact computation

Uncertainty Quantification in Materials Modeling 4



of the probability of failure. These bounds do not re-
quire the distribution of the inputs. Good candidate
upper bounds for use are the Concentration of Mea-
sure (CoM) upper bounds, which are described to
have a “Blessing of Dimensionality.”

Methodology: There are several CoM upper bounds,
and one such bound uses the “diameter”. Diameters
are the least possible upper bounds. Calculating the
bounds needs only two quantities - function mean
and function diameters. Usually these are both un-
known and have to be estimated. The diameter plays
the role of uncertainty and these bounds give a very
clear definition of uncertainty and safety margin.

Examples & results: An example application of the
method for the problem of simulation of ballistic im-
pact of Magnesium plates was presented. The objec-
tive was to design the protective Mg plate against
sub-ballistic threats simulated using LS DYNA. A
Johnson-Cook (JC) model was used to represent the
material. The design criterion was that the calcu-
lated indentation must be less than the maximum
allowable indentation. It was assumed that all the
uncertainty budget was consumed by the material
model. Experimental data shows considerable scat-
ter in the penetration depth. The JC model fit the
data but, due to the scatter in the data, there is con-
siderable uncertainty in the JC parameters. A range
of JC model parameters was chosen such that there
was a given coverage (say 95%) of the data. Bounds
on the probability of failure were then computed for
any given coverage of the data.

Conclusions: CoMs supply rigorous upper bounds
on PoF of complex systems. CoM PoF bounds result
in conservative designs. CoM UQ is non-intrusive.
That is, it can be implemented as a wrapper around
standard simulation workflows.

Discussion:
Questions and the subsequent discussion addressed
some important issues related to stochastic modeling
methodology as follows.

One question raised the difficulty of making mea-
surements for material properties at the microscales
in comparison to characterizing material microstruc-
ture by imaging. As such, what are the implications
of this for multiscale modeling?

The speakers acknowledged that, while it is true
that making measurements of material properties
at microscale is difficult, models need to be cal-
ibrated/validated against measurements. So, the

path in a multiscale approach might be to make
measurement of properties at the mesoscale directly
and use homogenized models at the mesoscale. It
was also pointed out that while homogenization is
a powerful tool in multiscale modeling, if homoge-
nized properties from the micro- and mesoscales are
used in larger scale simulations, this leads to loss of
the ability to capture localization. In many materi-
als such as quasibrittle materials, the main behavior
is governed by localization. Consequently, homoge-
nization schemes which do not allow localization to
manifest must not be used for such problems. In
addition, if there is no scale separation, then the
homogenized properties are stochastic. Considering
these facts, the relevance of the methodology and
models to be used for each problem must be care-
fully considered.

One participant observed that, while it is rational
and rigorous to employ bounds which are indepen-
dent of the probability distribution of the parameters
to represent uncertainty in the parameter values, it is
well known that such bounds are usually quite wide.
This raises the question of whether these bounds be
sometimes too wide to be practical?

The speaker replied that, while being overly con-
servative leads to economic losses, being overly opti-
mistic might lead to loss of life, damage to environ-
ment, and also have economic losses. The quest is to
obtain tight upper bounds which are robust. One ap-
proach is to estimate the optimal bounds that can be
computed given all the information available (data,
knowledge of the system, etc.) using methodologies
such as “Optimal Uncertainty Quantification”. This
is computationally demanding and requires a global
optimization problem to be solved. The effort might
be justified in critical applications where having high
confidence in probability of failure estimates is neces-
sary. Using bounds results in rigorous definitions of
margins and uncertainties, and establishes rigorous
upper bounds on probability of failure computations.
Since there can be a lot of uncertainty about prob-
ability model form and parameters, especially when
there is lack of data, using bounds provides rigorous
estimates with high confidence.

Another question raised the possibility of using
the Weibull distribution to establish a tight upper
bound. It was observed that in quasibrittle materi-
als, the Weibull distribution generated by the weak-
est link model has the highest estimates of probabil-
ity of failure. While the Weibull model might not
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be the best in estimating the tail risk of quasibrittle
materials, it always provided the highest values of
the probability of failure. But since this is currently
an observation, without a formal proof that this is
always true, it might not be justified to make this
assumption.

Another remark was that advances in other rele-
vant fields such as statistics and mathematics must
be utilized to solve challenges posed by the prob-
lem of UQ for computational mechanics and material
modeling.

Emerging Themes & Future Research:

Several important themes emerged from the ses-
sion, which motivate the need for future research
into specific questions related to stochastic modeling
methodology for materials. Some of these themes are
summarized herein.

Physical/Mathematical consistency of stochastic
quantities in materials modeling: A primary chal-
lenge that emerged is the ability to develop stochas-
tic models (i.e. scalar, vector, and tensor valued ran-
dom fields) that are consistent with physical conser-
vation laws, experimental observations, and neces-
sary mathematical principles. This poses significant
challenges for modelers – especially when the rele-
vant features are non-Gaussian, anisotropic, statisti-
cally heterogeneous, discontinuous (or discrete) and
time-variant. These challenges were emphasized by
both Prof. Ostoja-Starzewski and Prof. Guilleminot.
In the coming years, it will be imperative to de-
velop novel methods for simulating/generating ran-
dom fields that meet these rigorous conditions.

Model-form uncertainties, small datasets, and model
uniqueness/identifiability: While these can be
viewed as three distinct themes/challenges, their re-
lations are important and, for this reason, they are
discussed together here.

In the computational modeling of materials, the
form of the mathematical model used as an abstrac-
tion of the physics is governed by both theory/first
principals and available data (both computational
and experimental). Existing theory may be insuffi-
cient to fully describe the mechanisms of interest and
data from experiments/simulations are often sparse.
This poses significant research challenges that can be

broadly cast as “model-form uncertainties.” There
are many unresolved research challenges related to
model-form uncertainties, which were discussed in
each of the presentations in this session. New mathe-
matical frameworks are needed to account for model-
form uncertainties that result from theoretical limi-
tations. Small data cases pose particular challenges
for model selection. Prof. Ostoja-Starzewski in par-
ticular highlighted the challenges associated with
model uniqueness and identifiability – Can we even
uniquely identify stochastic models from the data
we have available? Prof. Guilleminot suggested
that Bayesian methods are particularly well-suited
to the problem of model selection and parameter
identification from small datasets, but new devel-
opments along these lines are imperative. Mean-
while, Prof. Ortiz proposed a robust framework that
is intended to provide rigorous theoretical bounds
regardless of dataset size and suggested that future
research should seek to ensure that such bounds can
be attained. The overarching conclusion was that re-
search to resolve these issues remains relatively im-
mature and there is a strong need for methodological
advances that address model-form uncertainties.

Lack of scale-separation and localization: Some at-
tention was given to problems which lack a clear
separation of length-scales. This issue was only
touched on briefly, but poses considerable challenges
for uncertainty quantification efforts. Most notably,
localization effects result from this lack of scale-
separation. While localization was a topic of con-
versation during the discussion in Session 1, it was
major theme of Session 2 so discussion of future re-
search along these lines will be reserved for that sec-
tion.

Integation of UQ methodology into design settings:
Through his proposed methodology, Prof. Ortiz
raised the important general issue of incorporation
of UQ methodology into a design setting. While Ses-
sion 4 specifically dealt with UQ in design, the chal-
lenges posed here related to UQ methodology devel-
opment. It was clear from the presentation, and the
ensuing discussion, that new robust methodologies
that provide rigorous bounds on performance, yet
are not overly conservative are of increasing impor-
tance.
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Session 2: Stochastic modeling of
materials: Material failure
Session Chair: Ernest Chin, US Army Research
Laboratory

Presenters:

1. Jia-Liang Le, University of Minnesota,
“Stochastic Modeling of Damage Localization in
Quasibrittle Materials.”

2. Yongming Liu, Arizona State University,
“Stochastic Non-local Lattice Particle Method for
Voxel Level Uncertainty Quantification and Ma-
terial Failure analysis.”

3. Jie Li, Tongji University, “Stochastic Damage
Mechanics: Developments and Recent Progress.”
(Presented by Prof. Xiaodan Ren.)

4. Mircea Grigoriu, Cornell University, “Esti-
mates of Extreme Material Responses for Ran-
dom Microstructures.”

Overview:
The focus of this session was on quantification of
uncertainty in material failure processes. While a
considerable amount of research has been performed
over the years to quantify uncertainty in elastic and
other linear properties of material through, for ex-
ample homogenization techniques, questions related
to uncertainties in material nonlinearity, damage
mechanics, localization, and other processes related
to material failure remain largely unanswered. This
is especially driven by the fact that micromechani-
cal mechanisms that drive material failure processes
are governed by localized phenomena the correspond
to rare events, or those associated with the tails of

probability distributions. These phenomena are dif-
ficult to simulate at the microscale (due to their sta-
tistical rareness and the complexity of these mecha-
nisms) and cannot be readily modeled in larger-scale
simulations due to the fact that their highly local na-
ture suggests a lack of scale-separation.

Presentations in this session dealt with these
challenges from a variety of perspectives: the chal-
lenges of simulating microstructures for material fail-
ure analysis, addressing mesh dependence in simu-
lations of localization, macroscale stochastic model-
ing of materials undergoing damage growth, as well
as simulations and extreme values statistics for rare
events. These presentations combined provided a
rich perspective on the challenges and opportunities
for research in stochastic modeling of material fail-
ure.

Review of Presentations:

Figure 3: Depending on the localization level, the
input probability distribution of tensile strength f̄t
varies with the mesh size he — transitioning from a
Gaussian cdf to a Weibull cdf.

Presentation 1: Jia-Liang Le “Stochastic Mod-
eling of Damage Localization in Quasibrittle Mate-
rials.”

Problem setting/motivation: The focus of the pre-
sentation was on quasibrittle materials, which often
exhibit strain softening behavior. This results in loss
of ellipticity of governing equations (i.e., loss of mesh
objectivity in continuum FE) due to the develop-
ment of a strain localization instability.

Background theory: Two existing methods are
widely used to treat strain localization: 1. Crack
band model and 2. Nonlocal continuum modeling.
To date, these two methods have been only applied
for deterministic simulations. In a crack band model,
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there is a transition from damage initiation to dam-
age localization. This presentation discussed the de-
velopment of a probabilistic crack band model. In
probabilistic finite element analyses, the mean peak
value of the strength decreases as mesh element size
is lowered (because there is a higher probability of
extreme values of strength being sampled). This size
effect seen here is not physical. So, there is a need
to ensure objectivity in the developed probabilistic
crack band model.

Methodology: In the proposed model, there is a prob-
abilistic treatment of random onset of the localiza-
tion band. Inception of localization occurs around
the peak strength. The location of the localization
band is determined by the material strength, which
exhibits certain spatial randomness, and whose dis-
tribution depends on mesh size (see Figure 3). The
number of potential crack bands is governed by the
localization level.

Examples & results: Two examples were presented.
The first example considered stochastic discrete ele-
ment simulations at fine scale, with random fields
for strength and fracture energy. Results at sev-
eral element sizes at the micrometer scale were pre-
sented. The second example considered the proba-
bilistic crack band model with a structure subjected
to three loading conditions. The three loading cases
were tension, pure bending, and three point bending.
The results showed how using this method mitigated
the mesh size dependence.

Conclusions: Stochastic FE simulation of quasibrit-
tle fracture requires special attention on how to nu-
merically treat the strain localization phenomenon in
a smeared continuum model. Two important aspects
to consider are: 1. regularization of fracture energy;
and 2. mesh-dependent strength distribution. The
proposed probabilistic crack band model can effec-
tively mitigate the mesh dependence of stochastic
finite element simulations, and can be potentially
combined with fine-scale discrete element model to
form a multiscale analysis framework that includes
localization effects.

Future Research Directions: Prof. Le suggested some
future research directions related to stochastic mod-
eling of localization effects. In particular, he high-
lighted the following:

• There is a need to extend these models to dynamic
fracture where the strength distribution function
exhibits rate dependence.

• There is a need to relate the different length-scales
in stochastic simulations. In particular, different
length-scales exist, for example, for fracture and
for random field correlations. These relations can
be explored by incorporating random field simu-
lations into these models.

Figure 4: Pixel/voxel level probabailistic microsc-
tructure model with different clustering parameters.

Presentation 2: Yongming Liu “Stochastic Non-
local Lattice Particle Method for Voxel Level Uncer-
tainty Quantification and Material Failure analysis.”

Problem setting/motivation: High fidelity computa-
tional model is preferred and sometimes required in
probabilistic computational material analysis. High
dimensional images are available, which can be used
when building high fidelity microstructure. In high
fidelity models, it might also be important to cap-
ture the interface between multiple material phases.
If data at each pixel/voxel is used, this leads to
extremely high-dimensional probabilistic computa-
tional material analysis (curse of dimensionality).

Background theory: In multiphase materials, the
same volume fraction with different clustering will
change some mechanical behaviors of the result-
ing microstructure. The nonlocal lattice particle
method can be employed in simulations of the high-
fidelity microstructure (see Figure 4). Another
possibility is to use atomic finite element method
(AFEM) in computational mechanics simulations of
the microstructure. Because of the extremely high
dimensions, these computational methods are very
expensive. Using the first order reliability methods
(FORM), computational cost can be reduced with
adjoint methods.

Methodology: Correlation-based reconstruction of
microstructure using n-point correlation (specifically
2- or 3-point correlation) is performed. Simulated
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annealing is employed to reconstruct the pixel level
microstructure. In probabilistic simulations, it is es-
sential to use efficient sampling methods, dimension
reduction methods, surrogate model methods, and
analytical methods such as FORM to deal with the
challenge imposed by the extreme dimensions. Ad-
joint lattice particle method (ALPM) is one such
method which is used here to reduce computational
cost wherein the function and its gradient can be
obtained by a small number of computational eval-
uations.

Examples & results: Results of validation exercises
of the ALPM method using a triangular lattice were
shown. The method achieved a consistent conver-
gence behavior in the reliability index irrespective of
the problem dimension when the number of prob-
lem dimensions was up to about 450, for linear and
weakly nonlinear material behavior. Results were
also shown for probability of failure analysis of a 2-
D biphase microstructure with different values of a
clustering parameter, with a dimension of 11,759.

Conclusions: ALPM is proposed as a probabilistic
computational material analysis tool which is inde-
pendent of dimensionality.

Future Research Directions: Prof. Liu identified sev-
eral future areas of research that relate to extensions
of his proposed approach as well as more general ad-
vances. These include:

• It will be important to go beyond the current lin-
ear formulation of the ALPM, which currently ap-
plies only to weakly nonlinear problems.

• For extremely high dimensional problems, it is
in general necessary to leverage surrogate models
and/or dimension reduction techniques.

• Physics-based learning by combining convolu-
tional neural networks with finite element anal-
ysis has the potential to significantly reduce the
number of training samples needed very extremely
high dimensional problems.

Presentation 3: Jie Li “Stochastic Damage Me-
chanics: Developments and Recent Progress.” (pre-
sentation given by Prof. Xiaodan Ren)

Problem setting/motivation: In materials such as
concrete, there is both randomness and nonlinearity
in the damage process. There is also damage dif-
fusion and multi-scale stochastic fluctuation. There
is a need to consider randomness in material and
structure level in a unified manner.

Background theory: A phenomenological damage
model, which is uniaxial, can be used to capture the
nonlinearity in the material behavior. Principles of
energy equivalence can be used to extend the uniax-
ial formulation to multiaxial cases.

Methodology: Nano-indentation testing of a three-
phase concrete medium was conducted to obtain
data on the strength of concrete. These test results
were used to build probabilistic models of the ma-
terial strength for use in computational mechanics
simulations. A principle of preservation of probabil-
ity, which states that the probability measure deter-
mined by the initial random source does not change
in the state evolution process of the system, was used
to trace the evolution of strength of the material
when the concrete underwent damage.

Examples & results: An example of evaluating the
seismic reliability of an existing concrete structure
was presented. Using the method outlined in the
presentation, it was possible to calculate the time
evolution of the probability density function of fail-
ure during seismic loading of the structure.

Conclusions: The presentation showed the applica-
tion of a generalized probability density evolution
equation to the problem of damage evolution in a
concrete structure subjected to seismic load.

Figure 5: 100,000 samples from an original corre-
lated Gaussian random vector (left) and 1,000 sam-
ples selected under a probability measure change em-
phasizing the extreme values (right).

Presentation 4: Mircea Grigoriu “Estimates
of Extreme Material Responses for Random Mi-
crostructures.”

Problem setting/motivation: The objective is to cal-
culate probabilities of rare events. Standard meth-
ods may not apply in many situations arising in com-
putational mechanics calculations because the sam-
ple size could be small.

Background theory: Two possible methods were out-
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lined in the presentation for such cases: 1. Extreme
value theory; and 2. Measure change. Extreme
value theory holds for asymptotic behavior of sam-
ple extrema, analogous to the central limit theorem
(CLT) for the sample mean. Measure change uses
the Radon-Nikodym derivative. The idea in measure
change is to use samples from a different, better mea-
sure Q to estimate statistics of a random element on
the desired probability space (see Figure 5).

Methodology: Generalized Extreme Value (GEV)
distributions, based on extreme value theory are
used to demonstrate their application in estimat-
ing extreme material response. GEV distributions
exhibit tail sensitivity, their exact distribution is
known, and they are easy to implement. Importance
sampling (IS) is an example of measure change. IS
estimators can theoretically achieve zero variance. A
data-based approach is adopted to construct Q.

Examples & results: An example of estimating ex-
treme stresses in a thin rectangular plate with a ran-
dom microstructure subjected to uniform determin-
istic uniaxial tension along the x direction was pre-
sented. Samples of the maximum value of the stress
along the x direction (i.e., the maximum principal
stress) at any location were generated. A GEV dis-
tribution was fit to these samples using the method
of maximum likelihood to estimate the parameters
of the distribution. This distribution was used to ap-
proximate the probability that the maximum princi-
pal stress was greater than any threshold value. An-
other example of evaluating large seismic responses
using the GEV distribution was presented. A single
degree of freedom (SDOF) system is frequently used
to approximate the behavior of structures, which
could be complex and nonlinear. The response of
the SDOF system (i.e., the intensity measure) is used
to characterize the seismic demand function of the
structure. It was shown that the current fragility
metrics are not sensible as these do not consider the
dependence between the intensity measure and the
demand function, especially when both of these have
high values.

Conclusions: GEV and measure change are methods
which can be used to estimate extreme material re-
sponses. By using a carefully constructed different,
better probability measure, it is possible to reduce
variance in the estimates of extreme values.

Discussion :
A theme of the discussion was the question of length

scales in the materials, and whether the methodolo-
gies presented are applicable only at certain length
scales or if there are implicit length scales in the
methods. The work presented using image based re-
construction was at the mesoscale, but the length
scale for such methods depends on the method used
for imaging - for example, whether optical or other-
wise. The length scale also depends on the material.
It was pointed out that for materials like steel, it is
possible to achieve great control over the microstruc-
ture by methods such as laser sintering, resulting in
low uncertainty. But for materials like concrete, con-
trol over the microstructure is harder to achieve.

In general, there is a length scale implicit in con-
tinuum simulations for quasibrittle materials and
caution should be exercised when performing con-
tinuum simulations. There are also autocorrelation
length scales which should be considered at fine
scales. For materials like concrete, there are large
length scales depending on the dimension of the ag-
gregates. Also, when modeling damage and soften-
ing, there are length scales related to the size of the
test specimen used to obtain the experimental data.
Given the aforementioned challenges associated with
lengthscale, it was expresed that caution should be
used when using the term RVE because it relates to
a deterministic homogenized continuum material.

It was further suggested that, for materials like
concrete, probabilistic methods can be used for the
purposes of understanding sensitivities of the mate-
rial system. Rather than providing high confidence
in the actual numbers extract from the models, these
sensitivities can help gain insight into the influences
of uncontrolled variability in the material.

A portion of the discussion session was related
to reliability calculation. In the microstructures re-
constructed from image data, material propertie at
each pixel of the biphase material were modeled as a
random variable having a Gaussian mixture distribu-
tion, in addition to variability in the structure of the
material. Reliability analysis was conducted at the
RVE scale, and not at the pixel scale. A possible im-
provement discussed was that the effect of hotspots
in the generated microstructure could be considered
in reliability analysis, rather than using only homog-
enized properties at RVE level. Other issues dis-
cussed were the shortcomings of using FORM for
the reliability analysis, such as how it is not trivial to
transform from non-Gaussian to standard Gaussian
space. Also, using only one most proabable point
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(MPP) for reliability calculations might not be the
best method. The ALPM presented currently used
FORM and a single MPP, but it is possible to extend
it to SORM and multiple MPPs.

Another question asked was whether
FORM/SORM give only lower bounds on proba-
bility of failure estimates because they are based on
a Gaussian distribution. The response was that it is
possible to overestimate the target too, and whether
these methods give lower or upper bounds depends
on the limit state. This also led to the discussion
that, for other applications such as in earthquake
engineering, simple scalar quantities like an inten-
sity measure are highly dependent on the probability
law of the random process/random field. Hence, for
material failure driven by extreme events, the use
of such simplistic measures might not be rational.
Most material systems are complex multi-degree
of freedom nonlinear systems, and use of simplis-
tic intensity measures or performance metrics are
inadequate.

Another point of discussion was the development
and use of neural networks to enable efficient uncer-
tainty quantification and propagation. It was re-
marked that training neural nets based only on data
required large amounts of data to achieve high ac-
curacy whereas by using knowledge of mechanics,
it is possible to significantly reduce training cost
for the same accuracy levels. For example, using
this physics informed approach resulted in reduction
of training data to only a few hundred samples in-
stead of requiring millions of images. Hence, as has
been shown in quite a few recent works, this is a
very promising direction for computational material
science. The usefulness of platforms such as Ten-
sor Flow can be greatly enhanced by using this ap-
proach.

Emerging Themes & Future Research:
Lack of scale-separation and localization: A domi-
nant theme of this session was the challenge of ad-
dressing problems that do not exhibit a clean sep-

aration of length-scales. It was observed that there
is significant randomness in damage processes and
diffusion of damage and these effects manifest in
localization. Several frameworks were presented to
numerically treat localization – including the crack
band model, nonlocal continuum modeling, and non-
local and adjoint lattice particle methods. But, the
key issues related to the fact that probability dis-
tributions of material strength and constitutive re-
sponse exhibit significant non-physical length-scale
dependence in numerical simulations. Consequently,
there is a need to address these variations both
through theoretical exploration of the extreme ma-
terial properties as well as through regularization of
numerical models (e.g. by regularizing fracture en-
ergy).

Modeling interfaces: It was highlighted that failure
often initiates at material interfaces. Data-driven
stochastic approaches are needed to better resolve
and model these interfaces to accurately model ma-
terial failure.

Rare event simulation considering small data: An-
other major theme of the sessions was related to the
fact that failure occurs in the tails of the distribu-
tion where observations are rare. Future research
needs to address the challenges of assessing mate-
rial performance in a way that accounts for the high
dimensionality and nonlinearity of the models and
their strong sensitivity to the tails of the distribu-
tion. This was especially evident when consider-
ing reliability of materials which exhibit localization,
where it will be important to go beyond methods
like FORM that rely on linearity and Gaussian as-
sumptions that are likely to break down for complex
materials.

Machine learning: It was highlighted that physics-
informed machine learning methods can greatly re-
duce the training set size needed for materials failure
models. This was an observation and will be revis-
ited in Session 3, which has machine learning as a
primary theme.
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Session 3: Data-driven modeling
and machine learning
Session Chair: Fariba Fahroo, US Air Force
Office of Scientific Research

Presenters:

1. Charbel Farhat, Stanford University, “Data-
Driven Model Reduction and Probabilistic Learn-
ing for Digital Twins.”

2. Youssef Marzouk, Massachusetts Institute of
Technology, “Optimal Bayesian Experimental De-
sign: Methodologies and Materials Applications.”

3. Clayton Webster, Oak Ridge National Labo-
ratory, “Learning high-dimensional systems from
data by nonlinear reconstruction of polynomial
approximations.”

4. George Karniadakis, Brown University, “En-
dowing Deep Neural Networks with Uncertainty
Quantification.”

Overview:
With the need to develop, inform, and validate
computational models of materials with experimen-
tal data, pass information between models (as in
a multi-scale setting), and construct inexpensive
surrogates and reduced order models for expensive
physics-based models, there is a growing need to
leverage recent advances in machine learning, data
science, data mining and data fusion for UQ in
materials. The aim of this session was to explore
the state-of-the-art and the future of this modeling
paradigm for UQ in materials.

Talks in this session focused on several different
aspects of machine learning for materials applica-
tions. The talks focused heavily on the use of ar-
tificial neural networks, their training as surrogate
approximators of solutions to physics-based equa-
tions (PDEs more generally), their construction, and
the integration of physics into the network itself.
Talks in the session also adressed model-order re-
duction and Bayesian methods as machine learning
algorithms. Model-order reduction is cast as a spe-
cific machine learning algorithm that is inherently
built from a physics-based model. Their use for dig-
ital twin construction is specifically addressed. With
regard to Bayesian methods, the question of learning
for optimal experimental design is addressed. Learn-
ing schemes are employed to inform experimental de-
signs that maximize expected information gain while
accounting for model uncertainty.

Review of Presentations:

Presentation 1: Charbel Farhat “Data-Driven
Model Reduction and Probabilistic Learning for Dig-
ital Twins.”

Problem setting/ motivation: A digital twin is a dig-
ital replica of a physical asset/product. A predic-
tive model is typically built to assist the design of
a product. Once the product is ready, this model
is generally left unused unless something bad hap-
pens to the product. The idea of a digital twin is
to keep this model current and use it for prediction
throughout the life of the product.

Background theory: A digital twin must be updated
based on data and must change as the physical coun-
terparts age, to be a good representation of the ac-
tual product. Ideally, the digital twin is supposed to
be such a good representation of the product that
once the product is in service, discrepancies between
the digital twin predictions and measurements from
sensors on the product should indicate the necessity
for maintenance of the product i.e., the philosophy
is to believe the model more than the measurements.
In many cases, it is not possible to only rely on data
to identify the underlying model as data is sparse.
Hence, physics-based models must be used in the
learning process, with data informing these models.

Methodology: The main idea is to perform machine
learning with models informed by data, rather than
learning with data. This is done by learning on a
parameterized Stieffel manifold. Nonlinear parame-
terized model order reduction is used with a physics
based model of the dynamical system. A reduced or-
der basis is constructed to represent the model of the
high dimensional dynamical system approximately.
Due to the large number of decisions involved in
building the model, much of the uncertainty is due
to ignorance about the model, and not due to the un-
certainty in the model parameters. To account for
this ignorance, rather than randomizing the parame-
ters of the model, the subspace in which the solution
lies is randomized - a stochastic reduced order basis
is employed and information is extracted from the
data.

Examples & results: One example presented show-
cased the difficulty in identifying the quantity of in-
terest as that is often not trivial. Another exam-
ple showed the results of using the approach pre-
sented in the talk to build a reduced order model
of an army truck – which led to speedup on the or-
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der of millions with the required accuracy. Another
example showed the results of both a deterministic
and a stochastic reduced order model for the wing
of an aircraft. Both models performed well when
compared to measurements with the measurements
being within the 98% coverage region of the stochas-
tic reduced order model.

Conclusions: Model reduction is machine learning
with models. Applications of machine learning to
the development of digital twins was demonstrated.

Future Research Directions: Prof. Farhat identified
two critical questions related to development of dig-
ital twins:

• Often the data coming from measurements cor-
responds to only a very small number of degrees
of freedom of the system. Prof. Farhat suggested
that such a small number of quantities of interest
are not sufficient for the construction of digital
twins. These need to be enhanced by physics-
based models and corresponding reduced order
models.

• Prof. Farhat noted that it is especially challeng-
ing to build digital twins that represent nonlinear
behavior, encompassing multiple scales, that also
show real-time performance, with quantified un-
certainty. This is a considerable challenge for the
future.

Figure 6: Expected utility for ‘center’ parameter
(left) and ‘offset’ parameter (right) of model for
Mossbauer spectroscopy.

Presentation 2: Youssef Marzouk “Optimal
Bayesian Experimental Design: Methodologies and
Materials Applications.”

Problem setting/ motivation: Experimental design
tries to answer the question – Given limited experi-
mental resources, how do we find the most informa-
tive data? The approach is to develop and optimize
design criteria that employ a model of the experi-
ment, that account for uncertainties in the model,

and that adapt to experimental goals.

Background theory: The Bayesian approach to opti-
mal experimental design (OED) was outlined in the
presentation. Experimental conditions were chosen
to maximize an expected utility based on Kullback-
Liebler divergence or to improve predictions of some
quantities of interest. The approach can also be used
for model discrimination where it is desired to con-
centrate the posterior onto fewer models.

Methodology: The methodology used a computa-
tional model to describe the experiment and needs to
compute the expected information gain. Since there
are no closed-form expressions for expected infor-
mation gain, and there are additional challenges im-
posed by nonlinear computational models, nontrivial
priors and noise models, and we want to avoid mak-
ing large approximations, Monte Carlo simulation is
employed to estimate the expected information gain.
Another possibility is to use importance sampling
to estimate the expected information gain. Both of
these approaches are computationally expensive as
there is a need to use nested Monte Carlo sampling.
To overcome this problem, a layered multiple impor-
tance sampling (LMIS) approach is adopted.

Examples & results: The first example addressed
OED for parameter inference of a model of a thin
film evolving on a heterogenous substrate with the
goal of learning about substrate properties from be-
havior of the film. The second example showed
OED for model discrimination considering compet-
ing models for He trapping at Cu-Nb interfaces.
Another example showed results of OED using the
LMIS approach for the two parameters of a nonlinear
model for Mossbauer spectroscopy (Figure 6).

Conclusions: The presented approach of focused de-
sign is a natural framework for incorporating mod-
els of model inadequacy. LMIS framework provides
“hooks” which are convenient for large-scale compu-
tation.

Future Research Directions: Prof. Marzouk identi-
fied the following critical questions related to OED:

• Treatment of model error or mis-specification in
Bayesian inference (broadly) and OED (specifi-
cally) is currently insufficient. Enhanced robust-
ness to these uncertainties is necessary.

• Richer or goal-oriented design criteria are needed.
For example, OED linked to downstream opti-
mization under uncertainty or OED to better
characterize material failure or rare events (from
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indirect data) need further developments.

• Three is a need to develop new methods for fast
approximate inference – especially in evaluating
design criteria.

• Optimal sequential experimental design, particu-
larly in dynamic environments such as dynamic
programming, poses massive computational chal-
lenges.

Presentation 3: Clayton Webster “Learning
high-dimensional systems from data by nonlinear re-
construction of polynomial approximations.”

Problem setting/ motivation: High dimensional pa-
rameterized PDE models with deterministic and
stochastic coefficients are commonly used in com-
putational mechanics. A major research question
is how to handle all these parameters and the as-
sociated plentiful data? This necessitates the use of
larger computers and better data compression meth-
ods.

Background theory: Nonlinear approximations with
multivariate polynomials makes use of the sparsity
and smoothness structure of the approximate solu-
tions and can lead to faster convergence than using
Monte Carlo or quasi Monte Carlo methods. Taking
advantage of sparsity induced norms and compressed
sensing leads to recovery of best s-term approxima-
tions. Uniform recovery of the best approximations
is guaranteed by the Restricted Isometry Property
(RIP).

Methodology: Machine learning with deep neural
networks is employed in several recent successful ap-
plications of function approximation. Using shallow
neural networks for function approximation has been
shown to have poorer performance compared to deep
neural nets.

Examples & results: An example of using nonlin-
ear polynomial approximations in high dimensions
was presented. This example was based on machine
learning methods and showed how to construct a
quasi optimal neural network.

Conclusions: First sharp estimates of the complexity
i.e., the total number of weights and computational
units as well as the depth of a generalized artificial
neural network required to recover the best approx-
imation in high dimensions have been recently ob-
tained.
Presentation 4: George Karniadakis “Endow-
ing Deep Neural Networks with Uncertainty Quan-
tification.”

Problem setting/ motivation: There is a strong in-
terest in UQ for physics informed learning machines
i.e., neural networks to solve PDEs.

Background theory: Frequently, deep neural net-
works in practice are becoming narrow. But, neu-
ral networks should ideally be deep and wide, which
is analogous to mesh refinement in FEM, and will
lead to good approximations of functions. Powerful
tools such as TensorFlow are available, which en-
able training neural networks with few lines of code.
Several physics informed neural nets (PINNs) have
been developed, some of which were discussed in the
presentation.

Methodology: One of the methodologies presented
for physics-informed neural nets was neural networks
with arbitrary polynomial chaos expansion (NN-
aPC). Another methodology presented was dropout
neural networks (DNNs) used in regression. This
method addresses uncertainty in data and issues of
approximability of the network. In this method,
units from the DNN are dropped independently and
randomly with a pre-selected probability. Using
DNN helps to reduce overfitting and to estimate ap-
proximation uncertainty. The mechanism of gener-
ative adversarial networks (GANs) was presented.
GANs learn the entire distribution itself and not just
moments. A GAN is a game between a generator
neural net and a discriminator neural net. One of
the aspects of using GANs is to identify criteria to
know when to stop the game between the generator
and the discriminator.

Examples & results: Intelligent Towing Tank de-
veloped at MIT was discussed, which uses ma-
chine learning and enabled a leap from 500 exper-
iments per PhD to 80,000 experiments in just the 9
months prior. Examples using GANs to approximate
stochastic processes and using PI-GANs to solve
stochastic differential equations were presented.

Conclusions: PI-GANs can be used to solve SDEs,
and scale well. In scaling up from 30 to 120 dimen-
sions, the cost only increased by about 8-10 times,
including training. The approaches have also been
used for a problem in 10,000 dimensions.

Future Research Directions: Prof. Karniadakis out-
lined the following future directions for physics-
informed learning machines:

• There is a need to continue developing physics-
informed neural networks which encode physical
laws and prior knowledge of physics
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• There is a need to demonstrate the effectiveness
of physics-informed neural nets in designing func-
tional materials with tunable properties, and for
other multiscale problems such as combustion, etc.

• Establishing probabilistic scientific computing as
a discipline will incorporate relevant aspects of
computational mathematics, information fusion,
multifidelity data, etc. Pedagogically, this will
better prepare future students to work at the in-
terface of machine learning, probabilistic mod-
eling, and physics-based modeling with high-
performance computing.

• Faster tuning of neural networks and developing
neural networks for high dimensions which utilize
memory efficiently are essential.

Discussion:
The discussion session for this session was canceled
due to the session falling behind schedule.

Emerging Themes & Future Research:
Machine learning: Perhaps the most common theme
through the session was the various uses of artifi-
cial neural networks, and particularly deep neural
networks for learning from/with physics-based cal-
culations. Arguments have been made that discuss
their advantages and disadvantages as a tool for com-
putational modelers. It is clear that continued re-
search is needed to establish their strengths, weak-
nesses, applications, and limitations as a tool for the
computational materials and UQ communities. It
was also emphasized that fundamental research to
establish their mathematical underpinnings is also
needed. Some specific research themes that arose re-
lated to neural networks were the following. There
was considerable discussion on the optimal architec-
ture for neural networks (i.e. deep vs. shallow NNs,
number of layers, nodes, etc.) for solution approxi-
mation from physics-based calculations / PDEs. It
was pointed out that neural networks should ideally
be deep and wide. Another important question re-
lates to the quantification of uncertainty in neural
network approximations. Dropout neural networks
were presented as an architecture that allows for
quantification of uncertainty, but there remains con-
siderable research need in this regard. Finally, it was
emphasized that, particularly for materials applica-
tions, neural networks should be physics-informed.
Different interpretations of this were presented in
which the neural network serves as an approximation
of a physics-based problem and where the physics

are encoded into the network. Their application to
materials design has not been studied in depth.

Model-form uncertainty: A theme that re-emerged
in this session was related to accounting for model-
form uncertainty in machine learning algorithms. It
was argued that, due to the large number of deci-
sions made in developing a model, much of the un-
certainty is due to ignorance about the model. Prof.
Farhat proposed a way to randomize the subspace
of the solution to account for this uncertainty. Fu-
ture research along these lines to build stochasticity
directly into the models is needed. The treatment
of model-uncertainty in Bayesian inference was dis-
cussed. Prof. Marzouk noted that there are signif-
icant limitations existing Bayesian methods to in-
corportate model uncertainties and specifically for
problems that involve optimal experimenal design.
The question of quantifying uncertainties in artifi-
cial neural networks was also explored, as discussed
in the previous paragraph.

Model-order reduction: Model-order reduction is
posed as a form of machine learning with mod-
els. Linking reduced order models to measurements
poses significant challenges due to the difference in
fidelity of measurements and models where measure-
ments only correspond to a small number of degrees
of freedom of the model. Modeal-order reduction is
viewed as an important research direction for learn-
ing from higher-fidelity models and there is consid-
erable need to improve out understanding of uncer-
tainties in induced by both the assumptions made in
the high-fidely model as well as the model-reduction.

Experimental Design: There remain many open
questions related to experimental design. The need
for future research related to incorporation of model-
form uncertainties was discussed, see above. It was
also mentioned that there is a need to develop ex-
perimental designs with enhanced objectives (for ex-
ample, materials design optimization and/or mate-
rial reliability). Several questions relate to reduce
the computational expense of these methods, specif-
ically as they relate to computing information gain
and sequential sampling methods.

Digital Twins: The presentation of digital twins sug-
gested a connection to materials in which multiple
scales, manufacturing processes, and real-time ma-
terial performance are modeled with uncertainty as
a twin to the corresponding physical material. Re-
search along these lines is needed.
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Session 4: Design and optimization
for materials
Session Chair: James Warner, National Aero-
nautics and Space Administration (Dr. Warner was
unable to attend due to the US Government shut-
down. Session chaired by Lori Graham-Brady, Johns
Hopkins University)

Presenters:

1. Zdenek Bazant, Northwestern University, “De-
sign of New Materials and Structures to Maximize
Strength at Probability Tail: A Neglected Chal-
lenge for Quasibrittle and Biomimetic Materials.”

2. Simon Phillpot, University of Florida, “Ra-
tional Design of Interatomic Potentials through
Multi-Objective Optimization.”

3. Wilkins Aquino, Duke University, “An Adap-
tive Reduced Basis Approach for PDE Con-
strained Optimization under Uncertainty.”

4. Jim Stewart, Sandia National Laboratory, “Op-
timization Under Uncertainty for Predicting
Properties and Performance.”

Overview:
The goals of this session were to address questions in
uncertainty quantification related to the materials-
by-design paradigm. The session addresses areas of
design and the optimization of materials from the
perspective of probability-based design of materials
(i.e. setting probabilistic design objectives informed
by, for example, failure probability or risk measures)
and the various roles of optimization in the anal-
ysis and design of materials. The latter includes
problems related to parameter optimization for ma-
terials models, risk-based optimization of stochastic
systems, multi-objective optimization, and topology
optimization..

The talks proposed that design of materials
should be based on reliability and/or risk with a fo-
cus on the tail of the distribution, not on low-order
statistical descriptors such as mean strength. In
one example, a recent model based on fishnet statis-
tics for bio-mimetic quasi-brittle materials which al-
lows analytical calculation of failure probabilities
was presented. Another talk focused on rational de-
sign of classical inter-atomic potentials using multi-
objective optimization. The rational approach when
there are multiple conflicting objectives is to de-
velop an ensemble of inter-atomic potentials on the

Pareto-front and select the best-performing poten-
tial for a given application. Another talk discussed
how reduced-order models can be tailored to suit op-
timization to guarantee convergence of optimization
algorithms, using an adaptive sample-based reduced
basis approach for approximating the PDE solution
and an inexact trust-region framework for objective
and gradient evaluation. The final talk discussed
optimization under uncertainty using new risk mea-
sures utilizing buffered probabilities, and discussed
issues such as spatial heterogeneity and higher vari-
ability which arise when optimizing additively man-
ufactured materials. Approaches to address these
issues using synthetic models of the microstructure
evolution during additive manufacturing were pre-
sented.

Review of Presentations:

Figure 7: Weibull to Gaussian tranisition upon
changing aspect ratio of the fishnet.

Presentation 1: Zdenek Bazant “Design of New
Materials and Structures to Maximize Strength at
Probability Tail: A Neglected Challenge for Quasib-
rittle and Biomimetic Materials.”

Problem setting/ motivation: Reliability based de-
sign is focused on structural design but overlooks
material design. 10−6 is the sited as a common tol-
erable probability of failure (PoF) in engineering. As
such, it is necessary to optimize not the mean ma-
terial strength but the strength at the tail for 10−6

PoF; in other words, it is necessary to adopt tail-risk
based approach to design of materials.

Background theory: Controlling material architec-
ture can profoundly alter the strength probabil-
ity distribution. In quasibrittle materials, for the
same coefficient of variation (CoV), superior mean
strength can lead to inferior strength at the 10−6 tail.
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There are only a few analytically tractable strength
models for failure probability, which are the weakest-
link models and the fiber bundle models. Quasibrit-
tle materials are made of brittle constituents, but
inhomogeneity size and the RVE are not negligible
compared to the structure size. At increasing struc-
ture size, they transition from ductile to brittle be-
havior. Probability of failure can only be determined
at the nano-scale for such materials. Scale transi-
tions up from nanoscale to macroscale are governed
by microcrack interactions in the fracture process
zone (FPZ).

Methodology: The focus is on quasibrittle tensile
(Type 1) failures. A fishnet structure is used to
model biomimetic architected nacreous materials.
This is only the third kind of model for which it
is possible to obtain the probability of failure an-
alytically. Order statistics can handle probability
of failure calculations for fishnet architecture with
gradually softening links.

Examples & results: One example highlighted the
huge difference between Gaussian (normal) and
Weibull cumulative distribution functions in the
tails. Results showing the size effect on strength
of quasibrittle materials such as concrete were pre-
sented. Results demonstrating the significant gain
of safety at the tail by adopting fishnet architecture
were shown (see Figure 7). Results of the strength-
ening effect of increased CoV in the strength of the
fishnet links was shown. Results of damage evolution
using gradually softening links instead of quasibrittle
links were also presented.

Conclusions: Using the variance and the mean is
not good enough, tail-risk design is necessary for
quasibrittle materials. The factor of safety is size-
dependent and reliability indices have been modified
to account for this.

Future Research Directions: Prof. Bazant high-
lighted the following important research needs:

• There is a need to work towards fusion of advanced
probabilistic methods and advanced mechanics.

• Design of quasi-brittle materials based on evalu-
ating tail-risk is more accurate. There is a need to
break from the normal approximation for strength
using only the mean and standard deviation.

• There is a need to quantify uncertainty in the
transition from nano-scale to micro-scale for quasi-
brittle materials.

Presentation 2: Simon Phillpot “Rational
Design of Interatomic Potentials through Multi-
Objective Optimization.”

Problem setting/ motivation: Atomic-level simula-
tions – for example, molecular dynamics (MD) sim-
ulations, involve solving Newton’s equations for a
large number of particles. The potentials which ex-
ist between atoms can not currently be measured ac-
curately and some model forms have to be assumed
for the interatomic potentials. This talk presented
a rational approach to selecting/designing the inter-
atomic potentials.

Background theory: Different values of the param-
eters of interatomic potentials give rise to different
properties seen in materials. Potential fitting is the
inverse process of trying to fit the parameters of a
given potential form to generate the targeted ma-
terial properties. The traditional approach to po-
tential fitting is to minimize a single cost function
involving the error for all QoIs, typically using a
gradient-based approach. Forming a single objec-
tive function requires combining all the multiple ob-
jectives into one, by taking a weighted sum of the
errors in each objective. The choice of these weights
is defined at the beginning of the optimization pro-
cess, is not connected to the errors in the objectives,
and depends on the user’s preferences. This leads to
subjectivity in the process.

Methodology: Using multi-objective optimization en-
ables the developers to remove subjectivity in the
process. Solving the multi-objective optimization
entails identifying a set of solutions that are an ap-
proximation of the Pareto front, where each of these
solutions is not worse than any other solution in
terms of all the objectives. In the rational approach
to design of interatomic potentials, the first step is
to define the target properties and values. Then, an
ensemble of rational potentials is developed, these
potentials are assessed, and the final potential to be
used is selected and tested.

Examples & results: Examples of applying the ratio-
nal approach of interatomic potential design to se-
lecting the Buckingham potential for MgO were pre-
sented. A database of rationally designed potentials
has been developed. This database contains optimal
parameter values of 7500 potentials which have been
identified from multiobjective optimization.

Conclusions: An autonomous, machine learning ap-
proach to potential design was presented, which uses
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Pareto analysis to develop an ensemble of rational
potentials. User preferences are introduced towards
the end of the rational process to down-select high
performing potentials for their application.

Presentation 3: Wilkins Aquino “An Adaptive
Reduced Basis Approach for PDE Constrained Op-
timization under Uncertainty.”

Problem setting/ motivation: Design and control in
computational mechanics require optimization un-
der uncertainty with constraints being imposed by
PDEs. This is computationally intensive to do and
necessitates the use of reduced order models. The
talk presented how to tailor reduced order models
for such problems to suit optimization and guaran-
tee convergence of optimization algorithms.

Figure 8: Results of optimal control for a 1-D
advection-diffusion problem using the proposed in-
exact trust region framework.

Background theory: Stochastic formulation of the
governing problem for optimization or control was
first developed. It was shown that for linear PDEs
with parametric uncertainty, the model is well-posed
almost surely. A risk measure called conditional
value at risk (CVaR) was defined and a frame-
work for solving the risk-averse optimization prob-
lem was presented. There are computational chal-
lenges posed by this framework which requires the
evaluation of the objective and its gradient, needing
N solutions of the state PDE and N solutions of the
adjoint PDE, where N is the number of samples used
to estimate the CVaR.

Methodology: A two-pronged methodology was

adopted to overcome the difficulty posed by the
high computational cost: 1. A provably convergent,
adaptive sample-based reduced basis approach was
employed for approximating the PDE solution; 2. A
provably convergent, inexact trust region framework
was utilized that allowed for inexact evaluations of
the objective and its gradient.

Examples & results: The developed methodology
was applied to obtain optimal control for a 1D
Helmhotz problem with two stochastic dimensions.
Samples generated were used to obtain Voronoi cell
partitions which were used to compute local reduced
basis approximation of the PDE solution. These ap-
proximate solutions were used for calculations in the
inexact trust region framework to solve the optimal
control problem and results are shown in Figure 8.

Conclusions: The three main ingredients in the pre-
sented approach were: 1. A local basis enriched with
gradient information; 2. A practical and effective er-
ror indicator; and 3. An inexact trust region frame-
work. The cost of the reduced bases solutions does
not grow with the number of atoms added. Exten-
sion of this framework to nonlinear PDEs is possible.

Future Research Directions: Prof. Aquino identified
the following future research needs as they relate to
optimization under uncertainty:

• In physics-based modeling, the physical and
stochastic domensions are often treated sepa-
rately. Unified frameworks are needed for treat-
ment of physical and stochastic dimensions.

• The influence of model-form uncertainty has not
been adequately addressed in problems of opti-
mization under uncertainty.

• Along a similar lines the treatment of imper-
fect knowledge on underlying probability laws,
which induces model-form uncertainty in proba-
bility models, poses several challenges to problems
of optimization under uncertainty.

Presentation 4: Jim Stewart “Optimization Un-
der Uncertainty for Predicting Properties and Per-
formance.”

Problem setting/ motivation: Additive manufactur-
ing has enabled new designs and materials. But,
it has been observed that additively manufactured
materials exhibit spatial heterogeneity and higher
anisotropy. This challenges traditional design meth-
ods and new methods are necessary to handle opti-
mization of such materials.
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Background theory: Topology optimization leads to
different designs for different performance objectives
and it is important to incorporate as much rele-
vant physics as possible. A risk measure such as
the conditional value at risk (CVaR) is used when
performing traditional optimization. When there is
uncertainty, buffered probabilities are utilized while
evaluating risk. Using buffered probabilities results
in conservative designs. In additively manufactured
materials, heterogeneous textures and morphologies
exist across multiple scales. Microscale variations in
the structure within and between components cause
variations in engineering properties. Hence it is im-
portant to model microstructure and its evolution
during fabrication.

Methodology: A microstructure simulator was uti-
lized to model evolution of the microstructure dur-
ing the additive manufacturing process. This was
done using the SPPARKS stochastic simulator, de-
veloped at Sandia National Laboratories. This in-
forms uncertainty quantification in final components
fabricated, as well as allows design of the process
variables. The microstructural effects are upscaled
to systematically represent material properties on a
larger, continuum scale. This respects length scales
and microstructure morphologies and allows effec-
tive modeling of the material variability and het-
erogeneity. The upscaling approach utilizes simu-
lations of multiple synthetic microstructures, which
are generated via models of the additive manufactur-
ing process, to estimate spatial statistics at quadra-
ture points of finite element analyses. This approach
enables spatial heterogeneity to be represented.

Examples & results: An example of simulations of
a gas gun experiment were presented. A simplified
model of the gas gun experiment was used in sim-
ulations. Spatial heterogeneity and variability was
captured in the properties of the material subjected
to impact, utilizing the developed approach. This
led to estimates of the variability in the response
of the material, which along with appropriate risk
measures using buffered probabilities, was used in
topology optimization.

Conclusions: An approach for upscaling the spa-
tially heterogeneous and variable microstructure
produced by additive manufacturing was presented.
This materials aware approach utilized the SP-
PARKS simulator of microstucture evolution. The
variability and heterogeneity can then be incorpo-
rated into design under uncertainty using topology

optimization and analysis for predicting variability
in material performance.

Future Research Directions: Dr. Stewart posed sev-
eral important questions related to materials design
under uncertainty.

• Can we “discover” new materials with desired
(and revolutionary) performance properties?

• Can we reproduce such materials in a predictable
and cost-effective way?

• Can we confidently “certify” that a particular ma-
terial will perform as intended in a given applica-
tion?

• How do we model extremely heterogeneous and
variable materials at all scales?

• How do we obtain and assimilate potentially vo-
luminous, uncertain data into models?

• How do we package our designs for human decision
making?

Discussion:
Discussion session canceled due to the session falling
behind schedule

Emerging Themes & Future Research:
Probability of Failure / Risk: A major theme that
emerged from several of the presentations was the
need to inform design and/or optimize for extremes
associated with the tails of the probability distribu-
tion. This was posed in different ways, and different
methods were applied (analytical probability of fail-
ure models, risk-measures such as conditional value
at risk, and buffered probabilities) but the common
task of informing design/optimization by measures
of extreme performance was prominent and repre-
sents an important area for future research in mate-
rials.

Optimization: It was clear from the presentations
that there remain many open questions in the meth-
dology and application of optimization under uncer-
tainty for materials applications. Different optimiza-
tion paradigms were explored including model pa-
rameter optimization (where it was argued that, for
design of inter-atomic potentials, a multi-objective
optimization approach can reduce subjectivity, risk-
based optimization with the integration of reduced-
order models, and topology optimization which al-
lows for different designs based on different perfor-
mance objectives.

Model-form Uncertainty: Issues associated with
model-form uncertainty once again arose. In the
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cases presented here, the selection of appropriate
inter-atomic potential models is a problem where
model-form uncertainty is prominent. It was high-
lighted by Prof. Aquino that model-form uncertain-
ties are particularly difficult to handle in problems of
optimization under uncertainty and continued fun-
damental research is needed.

Additive Manufacturing: As an application, addi-
tivitely manufactured materials pose all new chal-
lenges to designers because they change the prop-
erties of the base material and introduce new types
of uncertainties associated with, for example, aniso-
topies and heterogeneities that do not exist in con-
ventionally manufactured materials. It was argued
that, in additive manufacturing, there is a need
to explicitly model the manufacturing process to
capture stochastic morphology characteristics. The

resulting microstructure morphology characteristics
are then needed to inform design.

Decision-making: While the talks focused on
specific applications and implementations of de-
sign/optimization, the more abstract question of
how to use these optimization tools, measures of
risk, failure probabilities etc., to inform decisions was
posed as an open/unaddressed problem.

Lack of scale-separation: Examples in the presen-
tations once again illustrated challenges associated
with uncertainties introduced when materials do not
exhibit a clear separation of length-scales. This was
the case for the quasi-brittle materials of interest to
Prof. Bazant as well as the additively manufactured
materials of interest to Dr. Steward who expressed
the need to explicitly model manufacturing processes
in order to model material microstructure.
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Session 5: Multiscale material
modeling – Microstructure
Session Chair: Michael Falk, Johns Hopkins
University

Presenters:
1. Stephen Foiles, Sandia National Laboratory,

“The Fundamental Challenges to Uncertainty
Quantification of Atomistic-scale Materials Sim-
ulations.”

2. James Kermode, University of Warwick, “Pre-
dictive Multiscale Modelling of Materials Chemo-
mechanics.”

3. Timothy Germann, Los Alamos National Lab-
oratory, “Role of Uncertainty Quantification
in Embedded Scale-Bridging Materials Simula-
tions.”

Overview:
The theme of the second day of the conference was
multi-scale modeling. The first of three sessions on
the topic, this session focused specifically on un-
certainty quantification in models of material mi-
crostructure. Given its focus on the smallest length-
scales, the primary emphasis of this session was on
atomistic and other nano-scale numerical models.
The session addressed some of the fundamental chal-
lenges for UQ at these small length-scales including
the myriad of uncertainties that exist in quantum
mechanical and atomistic simulations using various
microscale modeling approaches such as molecular
dynamics, the embedded atom method, and density
functional theory. At these length scales, many ap-
proximations are made in simulations and there is
a critical need to quantitatively understand the un-
certainties introduced by making these approxima-
tions. The presentations discussed various ways to
account for and address these uncertainties, includ-
ing the use of advanced machine learning algorithms
such as Gaussian processes and artificial neural net-
works to learn interatomic potentials.

One of the talks proposed that while uncertainty
quantification of atomic scale materials simulation is
in its infancy, models are becoming sufficiently accu-
rate to justify UQ and highlighted the need to focus
on epistemic uncertainty, and using an ensemble of
potentials with Bayesian methods for robust simu-
lations. Another talk presented the Gaussian Ap-
proximation Potential (GAP) framework for model-
ing chemo-mechanics of silicon, with quantified un-
certainties. The last talk in this session discussed

scale-bridging using kriging-based surrogate models.
Active learning of inter-atomic potentials, to mini-
mize the use of expert knowledge and hence maxi-
mize the generality of the developed potentials was
presented. Bayesian ensembling to reduce uncer-
tainty in the neural networks was also discussed.

Review of Presentations:

Presentation 1: Stephen Foiles “The Funda-
mental Challenges to Uncertainty Quantification of
Atomistic-scale Materials Simulations.”

Problem setting/ motivation: The focus of the talk
was to highlight issues related to placing error bars
on atomistic simulations. Historically, the results of
atomistic simulations were mainly utilized to make
qualitative observations but multiscale engineering
simulations require making use of atomistic simula-
tion results in a quantitative sense. This necessitates
quantification of uncertainties in atomistic simula-
tion results.

Background theory: Multiscale material modeling is
not a simple linear march up the length scale. Un-
derstanding the behavior of a component at multiple
length scales is complex as several separate phenom-
ena operate at overlapping length scales. Some of the
challenges which arise in molecular dynamics (MD)
simulations at the atomistic scale are: 1. deviations
from the Born-Oppenheimer approximation; 2. in-
adequate interatomic potentials used in MD simula-
tions; 3. the importance of quantum mechanical ef-
fects; 4. bifurcations in behavior; 5. the limited time
scales of atomistic simulations; 6. approximations
made about structure of the atoms; 7. and existence
of coupling between composition and structure. In-
formation extraction from atomistic simulations for
higher scale models is not trivial as the physics is
influenced by locations of millions of atoms, which is
affected by the choice of interatomic potentials used
in the simulations. Good practice is to chose from
a repository of rationally designed interatomic po-
tentials, those which reproduce key features of the
material behavior under interest.

Methodology: Interatomic potentials have specific
functional forms and their parameter values are esti-
mated from data. Frequently, parameter values close
to the maximum likelihood parameter estimates also
fit the data almost as well. Hence, choosing an en-
semble of interatomic potentials might be better in
practice. A Bayesian approach can be utilized to
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construct an ensemble of potentials which can be
used in simulations. When multiple potentials are
used, two outcomes are possible - either the system
behaves more or less the same way with all the poten-
tials (i.e., results are qualitatively similar but quan-
titatively different) or the results could be qualita-
tively different, depending on how sensitive the sim-
ulation outputs are to the parameter values of the in-
teratomic potential. Hence, using such an approach
leads to understanding the effect of uncertainty in
the parameter values of the interatomic potentials.
It is also possible to have an ensemble of potentials
with different model forms and select the best model
form for the interatomic potential.

Examples & results: Examples were presented of a
recent study on faceting of Σ = 5 grain boundary in
Fe. The objective was to study if calculations and
experiments agree. Observations from this study
suggest that secondary grain boundary dislocations
should be considered while computing the length-
scale of grain boundary facets.

Results of MD simulations of polycrystals were
presented. These results showed that while ini-
tial conditions matter at the atomistic scales and
resulted in different local deformation mechanisms
such as grain boundary sliding occurring at differ-
ent boundaries depending on the initial conditions,
they do not make a huge difference for macroscopic
response.

Another example presented was simulation of
platinum-gold alloy. Monte Carlo simulation was
performed to identify where the gold would go in
this microstructure. It was observed that the gold
was heterogeneously segregated in the grain bound-
aries of platinum.

Conclusions: Error estimation/uncertainty quantifi-
cation for sub-continuum levels is in its infancy and
is still a major challenge. More accurate models are
required to justify UQ.

Future Research Directions: Dr. Foiles highlighted
several important problems related to UQ and error
estimation in atomistic modeling and in materials
science more broadly as summarized in the follow-
ing:

• He noted that it is increasingly necessary to make
changes to material science curricula to train ma-
terial scientists in the underlying mathematics and
information theory required for UQ.
• He emphasized that there is a need to make

UQ a regular part of the future research in sub-

continuum modeling of materials by, for example,
asking for uncertainty estimates during peer re-
view of articles.

• Practically, there is a need to incorporate compu-
tational techniques such as interval computing and
automatic differentiation into existing software for
computational materials modeling.

• We must improve the accuracy of material models
to make quantitative rather than only qualitative
predictions and justify uncertainty quantification.

• There is a need to address how to evaluate the
quality of simulations rationally, consistently, and
objectively rather than only relying on expert
opinion.

Figure 9: Hybrid QM/MM method for interaction
between crack growth and dislocation.

Presentation 2: James Kermode “Predictive
Multiscale Modelling of Materials Chemomechan-
ics.”

Problem setting/ motivation: Chemomechanical
processes involve strong coupling between chemical
bonds and mechanical strain. These processes are
important especially during atomistic simulations of
onset of failure in materials, and for processes such
as friction, fracture, and dislocation modeling. The
goal is to model complex chemistry and realistic
systems such as stress corrosion cracking, disloca-
tion/impurity interaction, and cleavage vs emission
in three-dimensional systems. This requires large
systems, long time-scales, and UQ.

Background theory: Simulation techniques at the
atomistic scales range from detailed, computa-
tionally expensive quantum mechanics models at
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angstrom length scales, to density functional theory
and embedded atom method at nanometer length
scales, to molecular dynamics simulations using in-
teratomic potentials at length scales of about 10
nanometers. There are aleatory and epistemic uncer-
tainties in simulations at the atomistic scale caused
by uncertainties in the form and parameters of in-
teratomic potentials used in MD simulations, ran-
dom microstructure of materials, limited data to
evaluate the accuracy of a chosen interatomic poten-
tial, algorithmic uncertainty in solvers, and limited
transferability of interatomic potentials which causes
problems in modeling chemical complexity such as
that caused by impurities. In hierarchical multiscale
modeling, uncertainties at atomistic scales are prop-
agated to higher scales by stochastic coarse grain-
ing. In concurrent multiscale modeling, there is si-
multaneous coupling between simulations at multi-
ple scales.

Methodology: To model complex chemistry in realis-
tic systems requires the development and use of hy-
brid schemes which combine the advantages of de-
tailed quantum mechanics methods and molecular
dynamics simulations. These hybrid methods are
typically force based and utilize quantum mechan-
ics (QM) in regions of interest such as the crack
tip or dislocation core, and molecular mechanics
(MM) outside of these regions. Active learning has
been used to develop interatomic potentials on the
fly. A general purpose machine learning potential
called Gaussian Approximation Potential (GAP) has
been developed, which is a Gaussian process model
trained from DFT data. By using the GAP frame-
work, it is possible to obtain per-atom error predic-
tions from the variance of the posterior probability
distribution.

Examples & results: An example problem of simula-
tion of dislocation glide in nickel based superalloys
was presented to motivate the challenges in UQ at
atomistic scale simulations.

Another example was a complex problem involv-
ing cleavage, partial dislocation, and stacking fault
in silicon. The hybrid QM/MM method was utilized
to solve this problem. This simulation can be used as
a predictive model because, although crack growth
was not explicitly programmed, the model was able
to capture the interaction between a crack and a dis-
location. It was observed in the simulation that the
crack grew in the initial direction, then grew along
stacking faults for some time, and then continued to

grow along the initial direction (see Figure 9).
Also presented were results of simulations using

the hybrid QM/MM approach of vacancy diffusion
in fcc aluminum, and edge dislocation in bcc molyb-
denum.

Results of UQ for the silicon GAP model were
shown for model vacancy migration, four-fold defect,
and generalized stacking fault energy.

Conclusions: Methods to perform UQ at the atom-
istic scale using GAP framework were presented. It
is especially challenging to model complex chemo-
mechanical processes in realistic systems.

Future Research Directions: Prof. Kermode high-
lighted several important challenges for UQ in atom-
istic modeling of materials, including the following:
• Research is needed on methods to propagate un-

certainty in GAP atomic energies through to ma-
terial properties
• To date, UQ in these methods only accounts for

limited training data, but there are many other
sources of uncertainty — e.g. QM model error,
algorithmic uncertainty, and others.
• In modeling interatomic potentials, there is sig-

nificant model error. There is a need to develop a
sample ensemble of “reasonable” potentials from
the GP without training.
• An attractive research direction is to carry out ac-

tive learning using predicted uncertainties to build
models on-the-fly.
• There is a need for stochastic coarse graining

methods to inform hierarchical multiscale models
that address how to transfer uncertainties, both
aleatory and epistemic from lower length/time
scale models to higher length/time scale models,
and ultimately into an engineering-scale model in
a sequential scale bridging framework.
• UQ is specifically needed for concurrent QM/MM

multiscale schemes

Presentation 3: Timothy Germann “Role
of Uncertainty Quantification in Embedded Scale-
Bridging Materials Simulations.”

Problem setting/ motivation: In multiscale simula-
tions, it is necessary to transfer information between
different models at different scales, or to bridge the
different scales. In scale bridging, the concept is that
not just that the mesh is being refined to capture
the response at lower length scales, but an entirely
different physical model is being used at a different
scale such as using a finite element model at contin-
uum scale to a phase field model at a mesoscale to
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molecular dynamics (MD) model at microscale and
atomistic or electron structure models at finer scales.

Background theory: It is computationally very ex-
pensive to perform simulations at several scales and
bridge the scales in sequential multiscale models.
Surrogate models based on kriging can be used to
emulate the expensive models at fine scales and en-
able scale bridging. It is also possible to identify
where new simulations need to be conducted to train
the emulator when kriging based surrogates are used.
Kriging becomes difficult for higher dimensional re-
sponse functions due to a lot of computational and
numerical challenges.

Using modern machine learning approaches to
obtain interatomic potentials has been promising. In
order to train the machine learning models, it is nec-
essary to generate data, and the choice of which data
to generate to be used for training the models is not
clear. It is essential to mitigate human bias caused
by relying on expert knowledge to decide which data
is used to train the models.

Methodology: The solution to overcome the numeri-
cal challenges in kriging is to use adaptive sampling
to perform scale bridging with kriging-based surro-
gate models. Adaptive sampling is a technique of
building the response surface on the fly, in which it
is only essential to explore a low dimensional mani-
fold in high-dimensional space, instead of the entire
high dimensional space. The method of adaptive
sampling uses an emulator trained from fine scale
responses and the workload (i.e., the number of fine
scale evaluations) can be greatly reduced by using a
database of fine scale responses. This approach lets
the approximation model specify where it is essen-
tial to obtain data. Choosing an acceptable error
threshold is part of the process and drives the need
to perform fine scale evaluations.

Interatomic potentials enable the use of force
field based simulations such as MD simulations,
which are computationally less expensive than the
more accurate and transferable methods based on
quantum mechanics such as density functional the-
ory (DFT). Machine learning can be used to con-
struct potentials derived from a large number of
quantum mechanical simulations and it is possible to
minimize use of expert knowledge for maximum gen-
erality and accuracy. Active learning (AL) enables
fully automated generation of data to train machine
learning potentials. AL is based on the concept of
Query By Committee (QBC) which makes use of an

ensemble of machine learning potentials and iden-
tifies regions where they disagree to be the regions
where new data has to be generated for training.
This systematic approach improves the accuracy of
the ML potential and also reduces the amount of
training data required.

Examples & results: Hierarchically interacting par-
ticle neural network (HIP-NN) is one example of a
method of using a neural net to predict the total
energy and properties given the configuration of a
molecule.

An example of using the approach of training
neural networks to generate interatomic potentials
for tin was shown. Using this active learning ap-
proach, the error in the ML potential reduced with
the number of training generations and enabled ac-
curate ML potentials for tin to be developed.

Conclusions: Performing multiscale simulations
is expensive, but applying surrogate models and
databases for bridging different scales is a promis-
ing avenue. Uncertainty quantification at sub-
continuum scales is still in its infancy and propa-
gating it through multiple scales is even more chal-
lenging.

Future Research Directions: Dr. Germann high-
lighted several important research questions related
to UQ in multi-scale modeling, including the follow-
ing:

• How do we transfer uncertainties, both aleatory
and epistemic, in sequential scale bridging from
lower length/time scale models through higher
length/time scale models into an ultimate engi-
neering scale model?

• In the context of machine learning, even if predic-
tions from multiple neural networks agree, what
can be done if the neural network is incorrect?
How do we estimate uncertainties in these ma-
chine learning tools for use in the concurrent scale-
bridging approach?

• In the training of interatomic potentials, there is a
need to collect and exploit expensive data cleverly
so as to maximize its utility.

• When neural network potentials are derived from
active learning, there is a need to develop im-
proved neural net architectures that enable quan-
tification of transferable (for example, covalent-to-
metallic) and longer range descriptors of electronic
state.
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Discussion:
One of the main discussion topics was the necessity
to use rational interatomic potentials in MD simula-
tions. Choosing an interatomic potential is a delicate
matter and only benchmarked, validated potentials
must be used to obtain meaningful results. It is not
good practice to choose a potential developed for
some particular conditions without testing them for
the desired conditions being studied.

Another question was about generating an en-
semble of potentials. The ensemble could be gen-
erated by choosing parameter values of a potential
functional form by Bayesian weighting based on a
training set. It was pointed out that, in the Gaus-
sian approximation potential (GAP) framework, it
is possible to obtain an ensemble of potentials gen-
erated from the prior without training data.

Another issue discussed was the constraint on the
fit due to the choice of a particular functional form
for the potentials, and how to identify the right func-
tional form. This is an especially difficult problem
because it is hard to quantify the model error. Most
of the approaches presented only deal with para-
metric uncertainty and leave out model form un-
certainty. One possible approach suggested to deal
with this issue was to conduct multiobjective opti-
mization to obtain a Pareto front for a particular
functional form, and repeating this with different
choices of the functional form. By doing this, it is
possible to test which volume of predictions cannot
be reached by a particular choice of functional form
for the interatomic potentials. Another approach is
to perform a Bayesian analysis to pick the form of
the model which maximizes the fit. It was suggested
that dealing with model form uncertainty is more dif-
ficult than the parametric uncertainty and, because
it might be nonparametric it was not clear which
distribution form to use for model form uncertainty.

There is a lack of smoothness in the response
functions from atomistic models and crystal plastic-
ity models. This led to the question of whether this
indicates there is some missing physics in the model.
If so, is there a way to inject some knowledge into
the model which can alleviate the lack of smoothness
in the response. It was pointed out that there are
structural approximations and other approximations
and assumptions made in atomistic simulations. For
example, while DFT is a very good approximation,
it is still not the ground truth but an approximation.
It is also not known how some seemingly innocuous

assumptions, for example on the boundary condi-
tions, might lead to changes in the response. There
is currently no way of guarding against making such
assumptions.

Another question surmised that there are 2 main
challenges: 1. picking the model form for the inter-
atomic potentials; and 2. how to identify and prop-
agate uncertainty. The question was whether there
are existing tools which allow us to solve these prob-
lems. The answer was that while there are some
good avenues to overcome model form uncertainty,
by for example, using active learning approaches, it
is not clear how to upscale the uncertainty in the
model forms. It was suggested it is possible to inde-
pendently work on developing approaches to upscal-
ing uncertainty in a multiscale framework. Another
opinion was that the challenges in propagating un-
certainty depends on what is the quantity of interest.
For some quantities of interest, there are approaches
which allow bounds to be placed.

Another question asked whether it was possible
to understand the physical aspects of the sampled
energy – i.e., is there some connection between the
saddle points in the energy and the ground states in
the system? It was thought that it could be possible
to explore the connections between the energy and
the states by using a combination of active learning
and Monte Carlo simulation.

Emerging Themes & Future Research:
Atomistic modeling: The focus of the session was al-
most entirely on atomistic modeling. We saw that,
as the accuracy of atomistic simulations using dif-
ferent theories are improving, there is a move from
qualitative simulation objectives (e.g. understanding
phenomenology/mechanisms) to quantitative objec-
tives for atomistic modeling (e.g. upscaling to higher-
level models). This poses enormous challenges be-
cause it requires a careful accounting of the many
errors/approximations made in atomistic modeling.
Atomistic methods currently rely heavily on approxi-
mations and simplifications (many of which are listed
in the presentation summaries above). The approx-
imation that was discussed universally was the ra-
tional selection and parameterization of interatomic
potential models. The conclusion was that atom-
istic simulations are in dire need of UQ to address
these approximations and that UQ can be particu-
larly impactful in the selection of interatomic poten-
tial model forms and parameter calibration.

Model-form uncertainty: Again, a dominant theme
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was the selection of inter-atomic potentials. It
was discussed by all of the presenters and various
approaches were proposed for selection of model
form and for model calibration including approaches
based on an ensemble of potentials and exploiting
machine learning methods to learn potentials.

Machine learning: It was argued that machine learn-
ing methods show promise as a means to identify in-
teratomic potentials and build surrogate models for
up-scaling. But, they present a number of challenges
such as training data/simulation selection and a need

for rigorous frameworks through which to quantify
uncertainty in machine learning algorithms.

Curriculum and Pedagogical Changes: It was argued
that, in materials science in particular, there is a
need to expand curricula to include the mathemati-
cal fundamentals of probability, information theory,
etc. needed for UQ. This improved training will aid
in the process of pushing atomistic level material
modeling in a more quantitative, error/uncertainty-
aware direction.
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Session 6: Multiscale material
modeling – Multi-scaling
Session Chair: Somnath Ghosh, Johns Hopkins
University

Presenters:

• Wei Chen, Northwestern University, “Multiscale
and Multidimensional Uncertainty Quantification
in Integrated Computational Materials Engineer-
ing.”

• Jaroslaw Knap, US Army Research Laboratory
“Accelerating Scale Bridging via Surrogate Mod-
eling.”

• David McDowell, Georgia Institute of Technol-
ogy, “Uncertainty in the Definition and Calibra-
tion of Multiscale Material Models.”

• Pedro Ponte Castañeda, University of Penn-
sylvania, “Homogenization Estimates for the
Macroscopic Response and Field Statistics in Vis-
coplastic Polycrystals.”

Overview:
The second session on multiscale material modeling
focused on the process/methodology of scale-briding.
With this in mind, the session aimed to explore dif-
ferent methodologies for scale-bridging and identify-
ing the necessary information to be passed between
scales for various applications and for different mul-
tiscale approaches (i.e. hierarchical vs. concurrent).
A major major topic of interest was how to model
relevant information at each scale and extract it for
subsequent scales, or – in the inverse case – how
to calibrate lower scale models from data at upper
scales. The presenters propose a variety of multiscale
modeling approaches including those that leverage
machine learning at individual scales (e.g. for ma-
terial microstructure reconstruction) and at the in-
terface of scales, methods that leverage surrogate
models for lower-scale models that enable fast ap-
proximation of lower-scale performance, hybrid top-
down/bottom-up scale-bridging to ensure physical
consistency in scale-bridging, and statistical homog-
enization strategies.

Overall, the talks highlighted the challenges in
various approaches for multiscale modeling of ma-
terial response. One of the modeling approaches
presented was to represent the variation in material
properties at several scales with spatial random pro-
cesses (SRPs), adopt top-down sampling to couple
the SRPs across scales, and train surrogate models

to represent the homogenized constitutive relations
at scale. In another approach, Gaussian processes
were used as surrogate models over subsets of the
domain to emulate the at-scale responses and hier-
archical Cholesky decomposition was employed to
bring down the cost of surrogate model construc-
tion. In another approach, the individual models at
scale were assumed to be valid and the uncertainty
in the linkages was reconciled through Bayesian cal-
ibration. The uncertainty was further reduced by
defining a physically meaningful inter-scale discrep-
ancy function as part of the calibration process.
The final talk focused on homogenization methods
for nonlinear behavior of heterogeneous materials by
making use of an optimally designed linear compar-
ison composite, and using this method to establish
bounds and statistical estimates for the macroscopic
response.

Review of Presentations:

Figure 10: Approach for uncertainty quantification
and uncertainty propagation in multiscale simula-
tions.

Presentation 1: Wei Chen “Multiscale and Mul-
tidimensional Uncertainty Quantification in Inte-
grated Computational Materials Engineering.”

Problem setting/ motivation: Some challenges in
the Integrated Computational Materials Engineering
(ICME) framework were discussed in the presenta-
tion. These were relating to microstructure char-
acterization and reconstruction (MCR), uncertainty
quantification and propagation in multiscale materi-
als, and Bayesian validation and calibration of mul-
tiscale simulators.

Background theory: In MCR, the objective is to

27 M.D. Shields & B.S. Aakash



stochastically characterize and subsequently recon-
struct the microstructure to enable automation in
material design. Physical descriptors of the material
microstructure are used to characterize the material
structure and its spatial correlation. Reconstruction
can be done via hierarchical optimization. Spatial
random processes (SRPs) can be used to represent
spatial variations of uncertainty sources, with cou-
pling across length scales achieved by top-down sam-
pling. This involves creation and use of metamod-
els of homogenized constitutive relations with mi-
crostructure variations. A Bayesian approach, which
also accounts for potential model bias, can be used
for calibration and validation of these material mod-
els.

Methodology: A model based approach was adopted
to do MCR for complex morphology and to enable
dimension reduction in the process. The phase val-
ues were modeled as functions of surrounding pixels,
and a decision tree was used as a supervised learner.

The approach used for uncertainty quantifica-
tion and propagation in multiscale simulations is
shown in Figure 10. Model complexity is managed
by adopting on-the-fly machine learning. Multi-
response Gaussian processes (MRGPs) were used for
quantifying correlated sources of uncertainty.

A Bayesian framework for calibration enables
considering various uncertainty sources and consid-
ering potential model discrepancy. Using a modu-
lar approach for Bayesian calibration enabled better
identifiability, better stability, and lower computa-
tional costs.

Examples & results: An example of MCR for uni-
dimensional CFRP composites was presented. Im-
ages of the microstructure of the composite in the
cross section and the longitudinal direction were an-
alyzed to characterize the microstructure. Results of
sensitivity analysis on moduli at the mesoscale, and
for dimension reduction of homogenized response of
woven RVE were shown. MRGP metamodels are
trained at the micro and meso scales and their im-
pact on the uncertainty at the macro scale was pre-
sented.

Another example presented the results of
Bayesian calibration of MRGP metamodel to rep-
resent the response of the CFRP. Calibration was
performed using the uniaxial tension test and vali-
dation was performed via the bias extension test. As
a final validation example, macroscale simulations of
the CFRP subjected to punch test was performed.

Overall, the calibrated multiscale model matched the
experiments better than the previously used mod-
els where tension and shear was decoupled at the
mesoscales.

Conclusions: Stochasticity plays a critical role in
materials behavior prediction. Dimensionality re-
duction can provide significant computational speed-
ups in stochastic modeling. Big data and lack of data
co-exist in materials informatics. Various sources of
spatiotemporally varying uncertainty should be con-
sidered in multiscale materials.

Future Research Directions: Prof. Chen identified
many key research challenges/questions related to
multiscale materials modeling, including the follow-
ing:

• How do we properly characterize location de-
pendent and scale-coupled heterogeneous material
micro-/meso-/nano-structures?

• When is (microstructural) uncertainty important
to consider in multiscale systems?

• Dimension reduction and active subspaces need
further development for vector valued, time-
dependent, and space-dependent quantities of in-
terest and for surrogate input-output relations.

• How do we conduct UQ when inferring 3D mi-
crostructures with 2D images?

• There is a need to build physics-aware machine
learning for processing-structure relations.

• New methods are need to build time-dependent
and path dependent surrogates.

• Surrogate models are needed that maintain con-
servation properties.

• Data fusion from multi-fidelity simulations poses
significant challenges.

• There is a need to develop spatially varying cali-
bration parameters in the presence of model bias.

• It is not clear how to define the form of the dis-
crepancy function for many applications.

• Can “calibrated” material parameters be extrap-
olative?

• There is a need to develop strategies for improving
model “identifiability.”

• Greater thought needs to be given to design of
multi-scale data collection.

• There is a need to develop methods for concurrent
design of experiments and computer simulations.
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Figure 11: Surrogate models over subsets of domain.

Presentation 2: Jaroslaw Knap “Accelerating
Scale Bridging via Surrogate Modeling.”

Problem setting/ motivation: Multiscale modeling
is a systematic approach to development of high-
fidelity material models. The objective is to combine
physics associated with relevant scales by bridging
the models between different scales. Scale bridging
is essential, but can be difficult and computationally
challenging.

Background theory: In a hierarchical multiscale
model, a higher scale model acquires missing data
by querying a lower scale model. Running simula-
tions at multiple scales can be very expensive and
surrogate models can be used to alleviate this dif-
ficulty. A surrogate model is an approximation of
a model, constructed from direct observations of the
model. Gaussian process regression (GPR) can serve
as a surrogate which is also capable of predicting the
error in addition to the function values. The error
prediction enables the possibility of running adap-
tive calculations based on a target error. But there
is a bottleneck caused by the O(N3) complexity for
inverting the sample covariance matrix. One possi-
ble avenue to reducing the computational cost is to
build surrogate models over subsets of the domain.

Methodology: Constructing a two scale model of
RDX with tight coupling between chemistry and de-
formation is notoriously hard due to difficulty in
capturing the coupling. However, atomistic models
can capture the coupling quite accurately. An adap-
tive online GPR model was used as a surrogate to
significantly reduce the cost of lower-scale models.
Multiple surrogate models were built over subsets of

the domain of the lower scale model. These sub-
sets are selected along trajectories induced by the
higher scale model and hence the surrogate models
have to cover only a portion of the domain of the
lower scale model. The procedure for adaptive online
GPR requires an upper bound to be imposed on the
number of data points in a surrogate model. Then,
surrogate models are continuously constructed from
nearby data points. The covariance is employed to
adaptively refine and construct new surrogate mod-
els given a target error of surrogate models. The re-
sult is that the individual surrogate models are con-
tinuous/smooth but global continuity/smoothness is
lost. To regain global smoothness and reduce the
cost of constructing the GPR, a method based on
hierarchical Cholesky decomposition was adopted in
the study.

Examples & results: The example presented had the
goal of developing a high-fidelity model of RDX. A
two scale model was developed for this. The upper-
scale model was a finite element model. At each inte-
gration point for each time step, a lower scale model
simulation was performed to obtain the equation of
state. The lower-scale model was in LAMMPS based
on dissipative particle dynamics. A single crystal of
RDX with no defects was modeled at the lower scale,
without modeling the chemistry.

The specific application being modeled was a 2D
axisymmetric model of a cylinder of RDX impact-
ing a rigid anvil. The model was computationally
very expensive and running a high fidelity concur-
rent multiscale simulation was computationally in-
tractable. Results of using the adaptive sparse grid
GPR approach based on hierarchical Cholesky de-
composition were shown. Figure 11 shows the spa-
tial subsets obtained by adaptive online GPR in the
domain of the lower scale model. Plots of the simula-
tion accuracy and results of the simulation efficiency
were shown for different number of grid levels, differ-
ent values of the sparsity parameters, and different
values of error tolerances in the adaptive sampling
approach.

Conclusions: The total cost of repeated evaluations
of the lower scale model can be often staggering, ren-
dering the overall method impractical. Surrogate
modeling can substantially reduce the cost. Gaus-
sian process regression (GPR) is well-suited for con-
struction of surrogate models. Using GPR enables
prediction of function values accompanied by predic-
tion of error. Hierarchical Cholesky decomposition
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can bring down the cost of constructing GPR surro-
gate considerably.

Future Research Directions: Dr. Knap identified sev-
eral areas where research is needed in hierarchical
multiscale materials modeling, including the follow-
ing:

• There is a need for improved methods for surro-
gate modeling in high-dimensional spaces, space-
time surrogate models, and adaptive multi-fidelity
surrogate models.

• Surrogate modeling in the presence of discontinu-
ities poses many challenges.

• Spatial scale-bridging is necessary for materials
with evolving internal state/microstructure and
requires a stochastic treatment.

• Temporal-scale bridging has not been adequately
addressed.

• Methods capable of exploiting hierarchical multi-
scale models for design under uncertainty for com-
plex materials are needed.

Figure 12: Challenges in hierarchical multiscale
modeling.

Presentation 3: David McDowell “Uncertainty
in the Definition and Calibration of Multiscale Ma-
terial Models.”

Problem setting/ motivation: The historical focus of
verification, validation, and uncertainty quantifica-
tion (VVUQ) efforts has been on individual models
focusing on a single length and/or time scale. An
area which needs attention is VVUQ for multiscale
models comprising a simulation operating over mul-
tiple length/time scales in a concurrent or hierar-
chical manner. Further, VVUQ for mathematically
and physically consistent multiphysics models is in
its infancy.

Background theory: There are two approaches to
multiscale modeling, using either hierarchical multi-
scale models (HMM) or concurrent multiscale mod-
els (CMM). In a HMM, there is one-way coupling of
physics at multiple scales, and there are uncertain-
ties in model form, initial values, parameters, and
the choice of scales to bridge. In HMMs, single scale
modeling is not enough, and it is also essential to
address uncertainty in connections. Figure 12 shows
a summary of the challenges in HMM.

Uncertainty quantification can be thought of as
being applied in two cases, depending on the amount
of data available - either there is ‘plentiful’ data or
‘small’ data. When there is plentiful data, uncer-
tainty quantification and propagation is applicable
and useful, and statistical learning algorithms that
track uncertainty can be used. The case of having
small data is the more common scenario in materi-
als design and development. In this case, uncertainty
quantification can provide algorithmic decision sup-
port to guide the choice of next experiment or sim-
ulation.

Methodology: Materials Knowledge System (MKS) is
a localization technique based on data science, used
to determine local response given macroscopic ap-
plied conditions. This enables high throughput mul-
tiscale simulations with sufficient accuracy.

The Inductive design exploration method
(IDEM) is a method in which feasible ranged sets of
specifications are found in a step-by-step, top-down
(inductive) manner. In this method, a designer iden-
tifies feasible ranges for the interconnecting variables
between two models in a model chain.

In crystal plasticity (CP) modeling, bottom-up
(BU) and top-down (TD) pathways have been shown
to lead to model parameter estimates that are differ-
ent. A combined TDBU strategy to inform the CP
model seeks reconciliation of these contrasting esti-
mates. Individual models in the HMM hierarchy are
assumed to be validated and the uncertainty of the
linkage between models is at issue. The calibration
method for combining TD and BU data uses a con-
strained maximum likelihood function. To reduce
discrepancy in the calibrated model, the constrained
likelihood functions are augmented with a physics-
based inter-scale discrepancy layer.

Examples & results: Results of using MKS to pre-
dict the strain tensor for basal textured α-titanium
were shown. The strain fields were sufficiently ac-
curate (1% to 3.5% mean error in comparison to
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CPFEM results for the same material). Another ex-
ample showed the application of MKS to high cycle
fatigue (HCF) in α-titanium polycrystals.

Another example presented was the application
of IDEM to designing the texture of α-titanium poly-
crystals.

Another example showed coordinated kink-pair
formation and the Kocks-Argon-Ashby flow rule for
bcc-Fe. The mesoscale flow rule had 5 calibration
parameters in addition to 3 alignment variables.
Normalized calibration variance was reduced signif-
icantly by introducing the inter-scale discrepancy
layer.

Conclusions: Scale bridging at the mesoscale is espe-
cially challenging because, at lower scales behavior
is governed by dynamics, while at higher scales be-
havior is governed by thermodynamics. There is a
need to ensure consistency between these scales. To
be consistent in both a TD and BU sense, models
have to be reconciled at the middle.

Future Research Directions: Prof. McDowell identi-
fied several areas where future research is needed in
multiscale modeling, including the following:

• In CMM, there is a need to address model-form
uncertainty to facilitate concurrency.

• With these multiscale modeling approaches,
there is a need to address complex, configura-
tion/environment dependent phenomena.

• There is a need to advance intrusive/embedded
methods for high-performance computing.

• In HMM, there is a need to shift more attention
to the identification of the appropriate number of
models/scales.

• There is a need to quantify uncertainty in link-
ing algorithms and model calibration procedures.
In particular, linking strategies are considered as
part of the model form and require UQ in the con-
figuration of the multiscale system and informa-
tion flow.

• Further study is needed on the utility and consis-
tency of bottom-up vs top down information.

Figure 13: Map of intraphase strain rate fluctua-
tions from full field simulations of fiber reinforced
composite.

Presentation 4: Pedro Ponte Castañeda “Ho-
mogenization Estimates for the Macroscopic Re-
sponse and Field Statistics in Viscoplastic Polycrys-
tals.”

Problem setting/ motivation: Homogenization is
able to provide effective properties and field statis-
tics such as phase averages and covariance tensors
for stresses and strains. The presentation addresses
how homogenization helps to quantify uncertainty in
these fields.

Background theory: If there is a wide separation
of length scales and the boundary conditions vary
“slowly” relative to the micro-scale, then an RVE of
the composite behaves like a homogeneous material
with effective properties depending on the properties
and distribution of the constituent phases (i.e., mi-
crostructure) but not on the specific boundary con-
ditions. The microstructure is described using grain
shape, grain orientation, and crystallographic tex-
ture. For solid polycrytalline materials, a suitably
defined linear comparison composite (LCC) is ho-
mogenized to obtain effective properties to estimate
the nonlinear behavior. The average response of the
polycrystal has to match the average in the LCC.

In fiber reinforced composites, hard aggregates
are embedded in a softer matrix. A unit cell with
periodic boundary conditions is modeled and simu-
lated making use of fast-Fourier transform (FFT).

Methodology: The polycrystalline material was
treated as having random “ellipsoidal” granular mi-
crostructure. The instantaneous response was ob-
tained by using fully optimized second-order (FOSO)
variational method. Self-consistent estimates of the
effective properties for the LCC and field statistics
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in the LCC were calculated. The macroscopic re-
sponse and the statistics of the nonlinear material
were given by the response and statistics of the LCC.

For fiber-reinforced composites, the distribution
of fibers in the plane was assumed random and
isotropic. Plane strain conditions were assumed to
exist, the phases were incompressible, and their be-
havior was governed by a power law. The material
was also assumed to be strain-rate sensitive. In or-
der to obtain statistical homogeneity and isotropy,
an ensemble average was taken over 20 configu-
rations. Second-order estimates made use of the
Hashin-Shtrikman linear estimates and required the
solution of three nonlinear equations.

Examples & results: Results for nonlinear homoge-
nization of ice polycrystals were presented. Power-
law behavior with exponent equal to 3 was used for
the grains. Plots of the effective flow stress com-
puted for the polycrystals with different levels of
grain anisotropy were shown. Also shown were plots
of standard deviation of equivalent strain-rate and
standard deviation of equivalent stress as a function
of grain anisotropy.

Results for simulations of fiber reinforced com-
posites were shown. Fluctuations of the local stress
and strain fields in the matrix phase were plot-
ted. Results of full-field simulations showing the in-
traphase fluctuations of strain rate were presented
for linear as well as nonlinear phases. For linear
phases, the strain rate fluctuations were isotropic
whereas for nonlinear phases, strain-rate fluctua-
tions increased and became anisotropic. Fiber-
reinforced composites showed strong localization of
the parallel strain-rate in simple shear with nonlin-
ear phase material properties (see Figure 13). Plots
of the distribution of strain-rate components were
also shown for the linear as well as for the nonlinear
material and it was shown that it is possible to esti-
mate the low-order moments using homogenization.

Conclusions: Homogenization methods have been
developed for heterogeneous materials with nonlin-
ear material behaviour making use of optimally de-
signed linear comparison composite. The methods
can be used to generate bounds and estimates of dif-
ferent types for the macroscopic (average) response.
By means of appropriate perturbations, the meth-
ods can be used to generate estimates for the mean
and covariance of the stress and strain fields in the
phases. The methods can account for complex, mul-
tiscale microstructures including porosity (damage)

as well as crystallographic and morphological tex-
ture, thus capturing the complex coupled effect of
crystallographic and morphological anisotropy.

Discussion:
An important discussion centered about the transi-
tion of UQ in multiscale material modeling to engi-
neering practice. It was remarked that the area of
uncertainty quantification and propagation in mul-
tiscale modeling and simulation appears to be in
its early stages of research/development. There are
many disparate pieces and methodologies and little
consensus on how to bridge scales. The question was
posed as to whether integrated multiscale modeling
approaches with UQ will be adopted in practice in
next 5-10 years, and whether such approaches are
becoming part of commercial software.

In response, it was noted that, while some of
these multiscale modeling capabilities have been em-
bedded in existing codes (e.g. LSDYNA), these are
all without uncertainty quantification. It was noted
that select companies have access to code for mul-
tiscale approaches and they are starting to be used
in a practical industry application. But other com-
mercial codes such as ABAQUS do not yet have the
multiscale approaches embedded in them. However,
integration of UQ to the process has not taken place.
It was noted that handling parametic aleatory un-
certainty appears to be relatively low-hanging fruit
for software such as ABAQUS due to integration
with Python, and that similar situations might ex-
ist for other software. Commercial software are not
likely to deal with model form uncertainties and
other epistemic uncertainties, on the other hand, be-
cause methodologies are still being developed. It was
also pointed out that there is also software such as
Dakota from Sandia National Lab, which facilitates
the integration of UQ into simulations.

When asked to highlight the most important is-
sues to be addressee for multiscaling in simulations,
the general response was that there are several im-
portant issues in going from microstructures/below
to higher scales, and it is very difficult to say which
is the most important/most critical. However, it was
also opined that model form uncertainty is an espe-
cially important topic requiring further study. It was
further remarked while machine learning and surro-
gate models provide potentially powerful tools, but
incorporating knowledge of physics must be used to
improves the capability and usefulness of these ma-
chine learning tools.
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Several discussions focused around questions
specifically related to the topics of presentation.
One such point of considerable discussion was about
whether it is possible to extend homogenization es-
timates to higher order moments, tail statistics and
extreme values beyond just moments. It was re-
marked that with 2-point statistics, it is possible to
calculate low order moments, but 3-point statistics of
microstructure are necessary to get higher moments.
It was noted that specifying input moments does not
specify the output moments because there is no one-
to-one mapping. Therefore, even with higher order
statistics of the input microstructure, it would not
be possible to calculate higher order moments of the
output quantities such as local stresses and strains.
It was further remarked that if you know the form of
the distribution of the output quantities, then it is
possible to analytically compute the moments, but
the form of the distribution remains unknown. It
was therefore concluded that considerable advances
in methods for computational homogenization are
needed that can incorporate tail-dependencies, ex-
treme values, and other higher-order properties to
capture material failure.

This led to some discussion about the general
practice of fitting probability models to test data for
materials. For example, for concrete, 21 types of
material tests can be done but most articles just fit
models to results from 2-3 types of tests, and this
practice needs to change.

Another aspect discussed was that epistemic un-
certainty (caused by lack of samples, numerical er-
ror etc.) cannot be captured by homogenization of
physical properties alone.

Emerging Themes & Future Research:
Different frameworks for multiscale modeling: As
the session progressed, it became increasingly clear
that several different frameworks have arisen for un-
certainty quantification in multiscale modeling. At
present, there is no universally accepted and unified
framework for UQ in multiscale modeling. Prof. Mc-
Dowell presented two potential frameworks in the hi-
erarchical and concurrent multiscale methods, and it
could be argued that many of the other methodolo-

gies presented could fit into these categories. How-
ever, it is not universally accepted that these meth-
ods are sufficiently general to capture the entire mul-
tiscale modeling paradigm. Moreover, within these
multiscale methods, approaches for UQ in scale-
bridging vary considerably. Presented approaches
included spatial random processes, surrogate-based
scale bridging, and homogenization. However, these
approaches are not necessary general, have their
strengths and weaknesses, and considerably more re-
search is needed to advance these methods to a stage
where general standard can be established for UQ in
materials modeling.

Surrogate Modeling: An important theme of this ses-
sion was use of surrogate models for scale-bridging.
Surrogate models can be powerful tools for multi-
scale simulations, but continued advances are needed
in their design and implementation for this purpose.

Model consistency: An important topic that was
raised was the issue of model-consistency. It was em-
phasized that scale-bridging models must be phys-
ically consistent at both upper- and lower- length
scales, they must also be consistent whether being
approach through a top-down or bottom-up frame-
work. It is not clear that many multiscale method-
ologies have worked to ensure this level of consis-
tency, and it has been suggested that this should be
a standard for scale-bridging.

Machine Learning: As in previous sessions, machine
learning was a popular topic of discussion. It was
highlighted that machine learning frameworks can
be useful for scale-bridging but additional work is
needed to investigate their applicability for different
problems, e.g. having different data structures and
constraints, and their limitations.

Homogenization: Considerable effort is needed to
overcome the low-order moment limitations associ-
ated with existing homogenization methods. It was
argued that future efforts should focus on homog-
enization techniques that are capable of reproduc-
ing extremes and material response to be consistent
with the true, potentially non-Gaussian probability
distribution of material performance.
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Session 7: Multiscale material
modeling – Macroscale
Session Chair: Sanjay Govindjee, University of
California at Berkeley

Presenters:

• Sankaran Mahadevan, Vanderbilt University
“Multi-scale Multi-physics Uncertainty Quantifi-
cation of Manufacturing Effects on Material Per-
formance.”

• John McFarland, Southwest Research Insti-
tute, “Calibration and Uncertainty Analysis for a
Temperature-dependent Yield Strength Model of
Additively Manufactured Alloy 718Plus.”

• Stephanie TerMaath, University of Tennessee,
“Sensitivity Analysis for Multi-Scale Modeling to
Inform Design Optimization.”

Overview:
The final session of three on multiscale modeling fo-
cused on integration of uncertainty in modeling of
materials at the macroscale (i.e. from millimeter up
to structural length scales). In particular, the goal
was to discuss how information from lower scale sim-
ulations and experimental data can be fused to in-
form material models at length scales of interest for
practical engineering applications.

One of the talks focused on multi-scale uncer-
tainty quantification for additive manufacturing dur-
ing multi-physics analyses. Approaches to perform
sensitivity analysis while incorporating epistemic un-
certainty were outlined. Another talk presented
a Bayesian approach for quantifying confidence in
models accounting for epistemic uncertainty, with
application to a physics-based constitutive model
for yield strength of Ni based superalloys. Discrep-
ancy between the model and experiments was ac-
counted for in a post-processing step by adding a
bias-correction term to the model. In the final talk of
the session, damage modeling of composite patches
used for repairing aluminum superstructure of ships
was presented.

Review of Presentations:

Presentation 1: Sankaran Mahadevan “Multi-
scale Multi-physics Uncertainty Quantification of
Manufacturing Effects on Material Performance.”

Problem setting/ motivation: Due to low volume
production of parts from additive manufacturing

(AM), there is limited data on part-to-part variabil-
ity and hence variability reduction efforts have to
be model-based, instead of being only based on test
data. Uncertainties in the manufacturing process pa-
rameters must be propagated to bulk material prop-
erties through multiscale modeling. The focus of the
talk was on uncertainty quantification and propa-
gation for multiscale and multiphysics modeling of
additive manufacturing.

Background theory: There are several challenges in
modeling the AM process, due to the models involv-
ing multiple scales, multiple physical phenomena,
high-dimensions, and coupling. There are also multi-
ple aleatory and epistemic uncertainty sources which
need to be accounted for. A Bayesian network with
Markov chain Monte Carlo simulation can be used
for multiscale uncertainty quantification. Model er-
rors are introduced by choice of the model form,
discretization in numerical solution, and surrogate
model error, if a surrogate model is used. If model
parameters are uncertain, then this leads to an even
larger set of variables , i.e. hyper-parameters, used
to represent the parameter uncertainty, in addition
to the model parameters. All of these uncertainties
must be accounted for systematically to perform sen-
sitivity analyses.

Methodology: The methodology adopted for multi-
scale UQ was a structural equation modeling (SEM)
framework which made use of lower level data to
validate the higher level model under uncertainty.
Using Bayesian hierarchical modeling and Markov
chain Monte Carlo (MCMC) simulation techniques
it was feasible to estimate the posterior distributions
of SEM parameters.

It was also necessary to perform sensitivity anal-
ysis considering epistemic uncertainty due to model
uncertainty and data uncertainty. However, it is not
possible to use traditional variance-based sensitiv-
ity indices for cases where the uncertainties are epis-
temic. The approach adopted used an auxiliary vari-
able for each stochastic variable which enabled com-
putation of several global sensitivity indices account-
ing for the contributions of epistemic and aleatory
uncertainty sources to the overall uncertainty in the
model output.

Since the multiscale and multiphysics model was
very computationally intensive, it was necessary to
use a surrogate model in the UQ approach. Since
the inputs and outputs are field quantities, even sur-
rogate models from methods such as co-kriging or
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GPR are very severely affected by the high dimen-
sionality. Hence, dimension reduction methods are
important. It was essential to perform singular value
decomposition (SVD) or principal component anal-
ysis (PCA) first to reduce the dimensionality of the
input/output and then build a surrogate model.

Examples & results: Multiscale modeling and simu-
lation was used to obtain the bulk material proper-
ties such as Young’s modulus of an additively man-
ufactured material. Results of the sensitivity of the
variance of the Young’s modulus at the macroscale to
manufacturing process parameters were presented.

A multiscale multiphysics model of the AM pro-
cess was built to predict microstructure evolution
during solidification of the material. The forward
problem involved uncertainty aggregation from the
various sources, including the surrogate model er-
ror, and sensitivity analysis, using the approach pre-
sented. Sensitivity analysis showed the important
first order and interactive effects. Then the surface
roughness sensitivity to different process parameters
was studied. PCA was used to reduce the dimension
of the output. Active subspace discovery was used
to reduce the dimension of the inputs. A surrogate
model was then built and this model was verified and
validated. This enabled the entire AM process to be
simulated.

Conclusions: Epistemic and aleatory uncertainty
from several sources were aggregated and propa-
gated through a multiscale multiphysics model using
a Bayesian network. Sensitivity analysis was per-
formed accounting for the effects of epistemic and
aleatory uncertainties separately. Surrogate mod-
els were developed after dimension reduction of the
input and outputs to make multiscale multiphysics
simulation of an AM material tractable.

Future Research Directions: Prof. Mahadevan iden-
tified several important challenges that require fur-
ther research, including the following:

• It is necessary to develop methods for online mon-
itoring of the manufacturing process for multiple
quantities of interest.

• Model calibration, model validation, model error
estimation, and uncertainty reduction are difficult
for any model, but are especially challenging for
multi-scale, multi-physics models.

• There is a need to enable process parameter opti-
mization to reduce variability in additively manu-
factured parts.

• Methods for process control under uncertainty
that include fusion of model prediction and moni-
toring data are needed to improve AM processes.

Figure 14: Calibrated yield strength prediction with
bias correction.

Presentation 2: John McFarland “Calibra-
tion and Uncertainty Analysis for a Temperature-
dependent Yield Strength Model of Additively Man-
ufactured Alloy 718Plus.”

Problem setting/ motivation: Models are necessary
to accelerate qualification of new processes and ma-
terials. Epistemic uncertainty is a key element which
must be accounted for during decision making about
qualification. Demonstrating and quantifying confi-
dence in models is a significant barrier to adoption
of model-based qualification approaches.

Background theory: The qualification process re-
quires deciding whether enough evidence is available
to qualify the process/material, and if not, deter-
mining what new information must be collected to
obtain the necessary evidence. This needs a frame-
work for quantifying confidence in model predictions,
which should be based on what is known about the
physics (i.e., the model) and available data. Epis-
temic uncertainties exist due to inability to fully
characterize unobservable model parameters. Inher-
ent variations (i.e., aleatory uncertainties) also ex-
ist in the available test data. It is necessary to
quantify both uncertainty types and understand how
they impact predictions. A Bayesian approach can
be used for quantifying confidence in model predic-
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tions. Once the uncertainties in the material prop-
erties such as yield strength are quantified, they can
be propagated through structure-scale models.

Methodology: A physics-based constitutive model is
used to represent the yield strength and subsequent
plastic response of a Ni-based superalloy. The con-
stitutive model has six yield strength components,
due to contributions from various microstructural
properties. Bayesian calibration with a discrepancy
function is performed using test data available for
the material. In a standard Bayesian calibration
framework, the data is modeled as the sum of the
material model prediction and an error term which
represents random variation. In Bayesian calibra-
tion with a discrepancy function, the test data is
modeled as a sum of the material model prediction,
a bias/discrepancy function, and an error term.

Examples & results: The framework was applied for
a Ni based superalloy. The specimens were addi-
tively manufactured using direct metal laser sinter-
ing (DMLS), with a fixed set of process parame-
ters. After the specimens were manufactured, they
were subjected to post-processing operations such
as stress relief, hot isostatic pressing (HIP), solu-
tion treatment, and ageing. The microstructure of
the manufactured material was then characterized
by measuring the grain size and the γ’ precipitate
size and volume fraction. Mechanical characteriza-
tion was performed using several tensile test speci-
mens, from 2 powder lots, tested at 6 different tem-
peratures. The test data for the yield strength of
these specimens was shown. This data was used to
quantify variability and calibrate the yield strength
model. It was observed that there was a small dis-
crepancy at some temperatures, which can be cor-
rected with a modified formulation which accounts
for bias in the model predictions. After analysis
using this modified Bayesian framework, parame-
ter samples were post-processed to quantify model
discrepancy and prediction uncertainty. Posterior
predictions utilize calibrated parameter values and
temperature- dependent bias correction. The results
obtained were as shown in Figure 14.

Conclusions: The presentation demonstrated a
framework for quantifying epistemic and aleatory
uncertainty for qualification of additively manufac-
tured materials. The Bayesian framework provides
flexibility and allows accounting for discrepancy be-
tween model and tests. Using the Bayesian frame-
work, it was possible to obtain probabilistic ma-

terial model parameters with quantified confidence
and identify the relative contribution of epistemic
uncertainties.

Future Research Directions: Dr. McFarland identi-
fied many important research challenges related to
UQ for additively manufactured materials, includ-
ing the following:

• We are only beginning to understand the sources
of variability in additively-manufactured parts.
These may include lot-to-lot powder variability,
machine-to-machine variability (even when the
same architecture is used), variability due to
differing machine architecture, machine settings
(power, speed, hatch, etc.), and specimen geome-
try/orientation, location-specific properties within
part which could be caused by, for example, dif-
ference in thermal history near surface.

• UQ can be a critical tool to establish when experi-
mental “re-characterization” of the AM process is
needed.

Presentation 3: Stephanie TerMaath “Sensi-
tivity Analysis for Multi-Scale Modeling to Inform
Design Optimization.”

Problem setting/ motivation: Prototype composite
patches (GRP laminates) are installed for tempo-
rary repair of aluminum superstructure cracks on US
Navy ships. It is not feasible to test a large number
of potential configurations and material combination
of the patches. Therefore, a rapid, physics-based
approach is desired to evaluate structural reliability
with these patches installed.

Background theory: The patches were applied on
a thick metallic substrate, and hence bending ef-
fects were important to be modeled. The substrate
was made of aluminum 5000 series alloys, which are
susceptible to sensitization caused by magnesium
precipitates which increases brittleness and causes
cracking, leading to corrosion by seawater. The
patches were in an environment where they could be
subjected to low-velocity impact. The manufactur-
ing tolerances were not tightly controlled, and this
had to be factored into the analysis. There was also a
lack of sufficient data for strength assessment; hence
A or B basis values were not available for use in de-
sign. After application of the repair patch, the hy-
brid structure suffers damage, which can be minor
but can substantially degrade performance. Mul-
tiple damaged regions may exist internally in the
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hybrid structure. There are multiple possible dam-
age mechanisms and these may interact, leading to
failure of the patch. It was therefore necessary to
develop models and methodology at multiple scales
to predict damage tolerance in a patched structure.
It was also necessary to identify the design and in-
stallation parameters which had the most influence
on structural performance.

Methodology: A sequential multiscale method-
ology was adopted for modeling the material.
The approach combined first-principles calculations
based on density functional theory at the atom-
istic/electronic scales, peridynamics simulations at
the microscale and finite element modeling at the
macroscale. A hybrid model was developed which
accounted for varying mechanisms of damage in the
metal, in the GRP, or in the bondline. This led to a
very complex damage behavior that varies with load,
configuration, boundary conditions, and materials.
Tests were conducted on the composite material for
calibration and validation of the models. Macroscale
testing was also performed to obtain data at differ-
ent boundary conditions and configurations. The
tests conducted were 3-point and 4-point bending
tests, low velocity impact test, crack growth test.
All damage mechanisms such as fiber breakage, ma-
trix cracking, delamintaion, disbond, were initiated
in the test specimens.

Examples & results: Results of the 4 point bend-
ing tests with 4 different configurations of the ma-
terial were shown. Different damage mechanisms
caused failure depending on the material configura-
tion. The different damage mechanisms were quan-
tified by energy absorption. Simulation results were
able to replicate the test results for all the 4 con-
figurations. A surrogate model was constructed for
interpolation between the data points but this sur-
rogate model did not give accurate predictions due
to the need to include hundreds of input parameters.
Instead, an approach was applied to build a surro-
gate model at each analysis scale and only include
sensitive parameters from scale i in the surrogate
model for scale i+1. Results were also shown for
low-velocity impact simulations and stress corrosion
cracking simulations.

Conclusions: It was observed in the study that all
potential damage mechanisms do not appear at the
same time, and their contributions can vary depend-
ing on loading conditions and input parameter val-
ues. As a result, it is necessary to study parame-

ter interactions and to map contributions of damage
mechanisms throughout the parameter space. Many
highly sensitive parameter values were based on low
quality data and it is necessary to fully character-
ize these parameters through experimental testing
to improve the models.

Future Research Directions: Prof. Termaath identi-
fied the following research challenges associated with
multiscale material modeling:

• Many multiscale materials problems are very high
dimensional. Methods are needed to build accu-
rate surrogate models for large dimensional prob-
lem, with ∼ 50 − 200 input parameters, for 5-10
design objectives and a highly nonlinear space.

• Along a similar lines, methods to limit the pa-
rameter space for complex models a priori could
be used to simplify the challenges associated with
high dimension.

Discussion:
The discussion revolved largely around the treat-
ment of model form uncertainty and, overall, treat-
ment of epistemic uncertainty was one of the emerg-
ing themes from the workshop. A question was posed
asking what is the best approach to handle model
form uncertainty. The presenters responded that a
Bayesian approach is attractive, but cautioned that
since they work mostly with Bayesian methods, their
opinion might be biased. Within the Bayesian con-
text, model error is included through a discrepancy
term. But this is only accounting for discrepancy
of that model at the level of the measurements, and
using this approach does not allow characterization
of model error outside of the range of measurements.
Another approach currently being developed by the
presenters is trying to use the governing equation
(i.e., a physics-based approach) instead of a discrep-
ancy term for the model error. This enables dis-
crepancy estimation in coupled multiphysics models
using Bayesian state estimation methods and allows
identification of the sources of the discrepancy.

In the treatment total uncertainty, a further
point of discussion was whether information is being
discarted if all the uncertainty (aleatory and epis-
temic) is rolled up into a single metric. The pre-
senters response was that it depends on the scenario
and what the decision-maker needs from the uncer-
tainty analysis. If the decision-maker wants/needs
one value of the uncertainty, then it makes sense to
compute one uncertainty values by pooling together
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all the sources of uncertainty. But, if the objective
of the uncertainty is different, for example if it is de-
sired to find out whether to budget for reduction is
epistemic uncertainty (which is possible by collect-
ing more information) then it is necessary to keep the
aleatory and epistemic uncertainties from all sources
separate.

Emerging Themes & Future Research:
Additive Manufacturing: Models of AM processes
are multiscale, multiphysics models that have a very
large number of uncertainties associated with the
process parameters, collected data and measure-
ments, and models of different physics at different
scales. Robust modeling approaches are needed that
can fuse these disparate uncertainties in a unified
framework and further enable the influences of indi-
vidual uncertainties to be assessed (i.e. enable sensi-
tivity analysis). These frameworks will be essential
to develop manufacturing process controls that in-
corporate model uncertainties as well as monitoring
data collected during the manufacturing process.

Limited experimental/manufacturing data re-
quires that materials studies and qualifiction of ad-
ditivitly manufactured materials be model-based.

However, it was clear from the presentations that we
are only beginning to understand the many uncer-
tainties that come into these models. It will be nec-
essary to quantify the many uncertainties in AM pro-
cesses needed to build model-based material qualifi-
cation standard that we can trust.

Sensitivity Analysis: A major theme of the session
was the ability to assess the sensitivity of material
performance to various parameters and uncertainties
that arise in manufacturing and modeling. This was
shown for additively manufactured materials where
is necessary to know how various process parameters
influence material performance and to assess the im-
portance of modeling uncertainties in process mod-
eling. For composite patches, it was necessary to
understand the influence of the many material pa-
rameters across many lengthscales on patch perfor-
mance and reliability.

Aggregation of Aleatory and Epistemic Uncertain-
ties: Both the presentations and the discussions
highlighted the need for consistent unified frame-
works that can adequately track both aleatory and
epistemic uncertainty.
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Closing Session
Session Chair: Michael D. Shields, Johns Hop-
kins University

Presenters:

• Sanjay Govindjee, University of California at
Berkeley “NSF NHERI SimCenter.”

Overview:
The intention of this session was to provide a forum
for discussion of the common themes and challenges
identified through the conference. One presentation
was scheduled to be given on the NSF Natural Haz-
ards Engineering Research Infrastructure SimCen-
ter, which provides a software infrastructure for un-
certainty analysis. This was to be followed imme-
diately by the discussion. Due to time constraints,
the closing session was merged with Session 7. Both
Prof. Govindjee’s presentation and the discussion
were held during Session 7.

Review of Presentations:

Presentation 1: Sanjay Govindjee “NSF
NHERI SimCenter.”

The goals of the NSF NHERI SimCenter at Berkeley
were presented. An overview of the facilities which
are part of the 10 centers in the NHERI consortium
as well as the SimCenter was provided. Some exam-
ples of the kind of work, such as regional level sim-
ulation of hazards with high resolution, which can
be undertaken with the workflows being facilitated
by SimCenter were shown. The main message was
that there is an opportunity for UQ researchers to
find application of their research at the NHERI Sim-
Center. In particular, some opportunities facilitated
by SimCenter that were highlighted were: 1. algo-

rithms for Bayesian updating of expensive models
and model class selection, with access to data and
models, 2. a testbed for methods for extreme events
(i.e., low probability but high impact events), 3. a
testbed for tools for multi-level Monte Carlo meth-
ods, 4. high impact, broader impact arena for tools
and methods for supporting decision making, and 5.
high impact, broader impact arena with very high
dimensional random variables and random fields.

Speed “Poster Slam”

During the final session of day one, each of the poster
presenters was given one minute to promote their
poster. The students/postdocs were instructed to
give a brief glimpse into the topic of their poster to
encourage the conference participants to visit their
poster to learn more. The poster sessions were held
during the coffee and lunch breaks and there was
a very positive response to the short poster presen-
tations. The students were very effective at giving
a short introduction to their presentation to spark
interest.
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Summary of Final Takeaways and Future Research Directions

The conference highlighted some of the most important topics of research in UQ for materials modeling
and a primary objective of the conference (and this report) was to distill the vast array of research activity
in this area down to identify some of the key challenges in the field. The following provides a brief, non-
exhaustive list of some of these challenges identified during the conference and serves as a recap to the
more detailed discussions above.

• A major challenge in material modeling, specifically as it relates to uncertainty quantification, is the
assessment of model form and model selection from competing models. This is true at all length-
and time-scales from the quantum to the structural scale as well as in the form of models used to
pass data between scales.

• There is a significant need for research related to uncertainties associated with lack of scale-separation
in a multi-scale modeling paradigm. This is especially important for material failure processes that
are governed by localization or extrema at a lower scale that must be accounted for at a higher-scale.
More generally, the application of UQ methods for problems related to extremes in material response
are critically important.

• Machine learning, surrogate modeling, and dimension reduction techniques present new opportunities
for advancements in materials modeling practice, but they need to be approached with caution, used
appropriately, and rigorously mathematically developed to include estimates of the uncertainties
induced by exploiting these tools.

• Methodologies that are capable of accounting for all sources of uncertainties, both aleatory and
epistemic, stemming from sources as disparate as small datasets, model-form, parametric variations,
and “unknown unknowns” need to be more broadly applied for material modeling problems at various
length-scales.

• The field has only recently begun to contemplate how to address challenges of materials-by-design in
a way that considers uncertainty. This poses numerous challenges as they relate to inverse modeling
practices such as Bayesian inference, design of experiments, optimization under uncertainty, machine
learning and surrogate modeling as applied to materials.

Again, these are just a few of the critical research areas in UQ for materials modeling, but overall the
conference helped to shed light on some of the specific challenges faced in each of these areas, which are
likely to be some of the major areas of materials research of the next 5, 10, or 20 years and beyond.
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List of poster presenters
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Appendix: Conference Program & Additional Details
The conference program is provided in the following pages. Further details on the conference and links to
available presentations can be found at the webpage of the workshop – http://uq-materials2019.usacm.org.
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718Plus
John McFarland – Southwest Research Institute

2:05–2:30 Sensitivity Analysis for Multi-Scale Modeling to Inform Design 
Optimization
Stephanie Termaath

2:30–2:45 Discussion

2:45–3:00 Coffee Break & Posters—Hodson Hall

Closing Session
Chair: Michael Shields, Johns Hopkins University 
Room: Hodson Hall 210

3:00–3:15 NSF NHERI SimCenter 
Sanjay Govindjee – University of California at Berkeley 

3:15–4:00 Closing Discussion – Primary Challenges and Future Directions

Organizing Committee:
Michael D. Shields, JHU
Lori Graham-Brady, JHU
Somnath Ghosh, JHU
Michael Falk, JHU

Administrative Support:
Ruth Hengst, USACM

Amanda Jackson, JHU
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